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 Chapter 1 
 Introduction 
 
 
1.1 Introduction.The purpose of this paper is to provide the search and rescue (SAR) 

community with a single document explaining the scientific basis for search planning. 
Both the Simplified Search Planning Method (SSPM), in place for the last 50 years or 
so, and recently proposed refinements collectively called the Improved Search 
Planning Method (ISPM), share this basis. The only difference between the two 
methods is that the ISPM is a more complete and flexible implementation of basic 
search theory than the SSPM. The main body of this paper explains the basic theory of 
search. In the last chapter, a comparison is made between the SSPM and ISPM to show 
which method produces search plans having the best chance of succeeding. 

 
1.1.1 This document was prepared by Mr. J. R. Frost of Soza & Company, Ltd., of Fairfax, 

Virginia, U.S.A., in cooperation with the U.S. Coast Guard. 
 
1.1.2 The SSPM is based upon a number of specific assumptions about the search object’s 

probable location, the nature of visual detection and the way in which searches are 
conducted. These assumptions, which are explained later in this paper, are: 

 
· The possible search object locations are distributed around a datum position in a 

circular normal probability distribution; 
· The means of detection is visual; 
· The inverse cube model of visual detection (which is based on its own set of 

assumptions and the geometry of instantaneous detection opportunities from 
aircraft) is sufficiently accurate under all search conditions; 

· Searches are performed as series of equally spaced parallel sweeps relative to the 
search object; and 

· Specific levels of coverage or search effort are used for each search in a series of 
searches for a search object. 

 
1.1.3 Some refinements have recently been recommended as a more complete 

implementation of the basic theory to produce the ISPM. These refinements include  
 

· Increased flexibility allowing optimal search plans to be developed for any level of 
available search effort;  

· Extensions (discussed only briefly in this paper) for use with probability 
distributions other than the circular normal type; and  

· Extensions (also discussed only briefly) to accomodate varying search conditions. 
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1.1.4 Most of the material in this paper is based on the work of B. O. Koopman as 
documented in his book Search and Screening [1]. However, while Koopman 
developed the general theory of search, a number of specific assumptions, some listed 
above, were apparently made in the application of this theory to the development of the 
SSPM. Documentation of the rationale for these assumptions and the identity of the 
original developers of the SSPM seem to have been lost. This paper endeavors to 
provide a simplified explanation of Koopman’s theoretical work and show how it has 
been applied to SAR, including speculations about the rationale behind some of the 
apparent assumptions made when the theory was translated into practice. This paper 
will attempt to explain the theory of search in sufficient detail to provide the general 
reader with a practical understanding of the subject, but the level of the mathematics 
used will be kept to the minimum required to achieve a pragmatic appreciation of the 
necessary concepts. Mathematical rigor may be found in the references provided in the 
bibliography for readers who require it. 

 
1.1.5 The discussion of search theory will proceed as follows. The remainder of this chapter 

will be devoted to describing the major characteristics of searching, giving some non-
SAR examples of common search situations, and placing search operations in their 
proper context with respect to the total operation aimed at achieving a particular goal. 
Chapter 2 develops the three the basic probability concepts that are central to search 
theory. Chapters 3, 4, and 5 then develop each of these concepts in some detail. Chapter 
6 brings the three central probability concepts back together to explain the theory of 
optimal search. Finally, although the mechanics of the SSPM and ISPM are not 
discussed in detail, a comparison of the results obtained with each is presented in 
Chapter 7. 

 
1.2 Practical Aspects of SAR and Searching. Before any rescue operation can take place, 

the survivors must first be found. In many cases, searching is limited to locating the 
survivors in a very small area based on a position provided by the survivors or signals 
from the survivors’ location (such as those from an emergency position indicating radio 
beacon or EPIRB) from which a position can be deduced. Other efforts are intended to 
“take the search out of search and rescue,” e.g., by maintaining and improving the 
Cospas-Sarsat system and increasing the availability of devices such as EPIRBs 
through cost reduction and, in some cases, carriage regulations. However, electronic 
emergency beacons will not always be where they are needed, may not always survive 
the SAR incident in good working order, may become separated from the survivors, 
and will always have a limited active life due to the necessity of being battery powered. 
Although the relative number of SAR incidents where significant searching is required 
may go down, it is highly unlikely that the need for searching can be completely 
eliminated in the foreseeable future. Searching will remain an essential element of SAR 
for some time to come. 

1.2.1 Searching becomes necessary when it is known, or there is sufficient concern, that a 
SAR incident has occurred but there is a large uncertainty as to the location(s) of the 
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survivors. Sometimes investigative efforts can uncover clues which substantially 
reduce the uncertainty about where the survivors are. For this reason, SAR Mission 
Coordinators (SMCs) should pursue investigative efforts vigorously from the moment 
of the first alert until the survivors are actually located and rescued. However, in many 
situations, especially those involving survivors adrift on the ocean, the uncertainty in 
the survivors’ location can increase rapidly with time, making the search problem 
increasingly difficult. In addition, the chances of the distressed persons’ continued 
survival often decrease rapidly with time. For these reasons, searching must often begin 
early in the case based on the available clues, however large their uncertainties may be, 
if a rescue is to be effected. 

 
1.2.2 Searching is a complex, arduous, time consuming, and expensive task. These 

characteristics provide ample justification for trying to “take the search out of search 
and rescue.” However, these same characteristics also justify expending a good deal of 
effort in the planning stages to make those search efforts which are necessary as 
efficient as possible. In the long run, greater efficiency will reduce the amount of 
search effort required to obtain successful results and will often reduce the time 
required to locate the survivors. That is, better search planning methods can take some 
of the search effort out of SAR and increase the number of lives saved at the same time. 

 
1.2.3 Everything in the preceding paragraphs has been self-evident to SMCs and search 

planners for many years. What has been much less evident is that the operation of 
search actually has a considerable scientific foundation. The SSPM, as published in 
various national and international SAR manuals, contains almost no hint of its scientific 
background. On the other hand, the scientific work that has gone into the development 
of devices (and the platforms that carry them) to detect and identify objects from 
increasingly large distances has been widely publicized. While the unaided human 
senses, search facilities such as aircraft and vessels, and various detection and 
navigation devices and aids are necessary for a successful search, they are not 
sufficient. The manner in which these components are employed in a search effort is 
just as important as the individual capabilities of the components themselves. It was 
this realization which started the development of search theory as a branch of applied 
science. 

 
1.3 Practical Examples of Search Activity. Searching as an activity is not something that is 

unique to SAR. It is actually a common activity undertaken for a wide variety of 
purposes in an equally wide variety of settings. The non-SAR examples in the 
subparagraphs below may help to put the general problem of search in perspective. 

 
1.3.1 We all search for something almost every day. Such searches may be for misplaced 

objects such as keys, papers, jewelry, etc., or the lavatories in a strange building, or any 
of hundreds of other things whose exact location is not immediately known. Usually we 
try to think of the most likely location and concentrate our search effort there, until 
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either the object is found or continued lack of success makes us wonder if we are 
looking in the right place. As we will see later in this paper, this intuitive approach to 
search planning is supported by the mathematics of search theory. Another thing daily 
experience teaches is that an organized pattern of search is more likely to succeed than 
casting about randomly, especially if the object is small or blends with its background. 

 
1.3.2 Archeologists search for lost cities by looking for clues in ancient writings and records, 

examining the geology of the region, interviewing indigenous peoples, and then 
physically searching for evidence at the site where the ancient city is thought to have 
stood. In other words, a substantial initial investigative effort is made to reduce the 
uncertainty about the ancient city’s probable location. Once the search area is reduced 
to a manageable size, a carefully planned and organized physical search is undertaken 
for further evidence. This is basically how the ancient city of Troy, once thought to be 
purely fictional, was found in the last century, over 3,000 years after the Trojan War 
described in Homer’s Iliad. Investigation is an important activity in the search planning 
process for the same reason — to reduce uncertainty about the survivors’ location. 

 
1.3.3 Mining and oil companies search for mineral and petroleum deposits which may be 

profitably exploited. Prospectors for such deposits look first for large-scale geologic 
features which indicate the minerals they are seeking are likely to be nearby. When one 
is found, they often detonate small amounts of carefully placed explosives in the 
vicinity, then record and analyze the seismic consequences. This allows them to reduce 
the uncertainty about whether deposits are present. If there are indications of minerals 
or oil, the seismic data may also provide indicators about the size of the deposit as well 
as a better (less uncertain) estimate of its exact location. If the results of the seismic 
“search” are encouraging, then a more detailed, and expensive, search may be 
undertaken in the form of drilling, tunneling, or limited excavation. While each of these 
steps tends to reduce the uncertainty about whether a deposit exists and can be mined, 
uncertainty about whether a profit will be made often remains significantly high for 
quite some time after mining operations have begun. 

 
1.4 Search Object Detection and Recognition. To succeed in finding an object, it is 

necessary to both detect the object and recognize it as the object being sought. When 
the object is in plain view and sufficiently close to the observer, its recognition is so 
immediate that detection and recognition seem to happen as a single act. In most search 
problems, however, recognition can easily be a matter of real difficulty apart from 
detection. Detection occurs when the searcher perceives a set of sensory impressions 
indicating the presence of an object. Recognition requires interpretation of these 
impressions to determine their source or cause. With detection equipment, what is 
perceived may be “blips” on a radar screen or sounds in an ear-phone and it is 
necessary to interpret these clues, in light of all other available information, to decide 
whether they are caused by the object of the search. 
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1.4.1 Three factors are involved in the act of recognition: 
 

1. Factors of a physical order, such as the nature and properties of the search object, 
those of the detecting equipment, and those of the environment. 

2. The time and place of the detection, capabilities and likely behavior of the 
survivors, and any correlation with recent reports or events. 

3. The psychological capability of humans to “recognize” — as in the recognition of 
an individual face. 

 
1.4.2 Electronic sensors typically perform only the detection function although in some 

cases, primarily of a military nature, electronic or sonic “signatures” can be used for 
identification purposes. For all practical purposes, electronic sensors used in SAR 
searches do not perform the recognition function. One exception is the 406 MHz 
EPIRB. Beacons of this type emit a data stream to orbiting satellites which includes a 
unique serial number and possibly a code indicating the nature of the incident. If the 
beacon has been properly registered, information about the owner, craft and lifesaving 
equipment can be retrieved from a database. However, search facilities on scene only 
receive a 121.5 MHz homing signal that contains no recognition data. 

 
1.4.3 The detection capabilities of electronic sensors are constantly being improved so that 

smaller and smaller objects may be detected at greater and greater distances. However, 
we must not lose sight of the fact that the act of recognition is essential. Sometimes 
electronic information alone can be used to determine that an object is not the search 
object. The International Ice Patrol uses a Side-Looking Airborne Radar (SLAR) to 
detect, record on film, and plot the locations of icebergs. However, SLAR detects ships 
as well as icebergs. Detections of ships are eliminated by computing the course and 
speed of each detected object from the SLAR data. (Overlapping sweeps are used so 
that each object is normally detected at least twice during a patrol.) Course and speed 
information allows the SLAR operators to separate vessels from icebergs without 
actually sighting either. Similar techniques can sometimes be used in SAR searches. 
However, in SAR, recognition often requires visual inspection of each detected object 
to determine whether it is the search object. This fact, and the fact that most SAR 
search objects are difficult to detect electronically, are the primary reasons the human 
eye remains the sensor of choice in SAR searches. 

 
1.5 Search Object Motion. In subparagraph 1.2.1 above, it was observed that common 

experience teaches us that organized searching usually produces better results than 
random, disorganized efforts. However, the objects of many common, everyday 
searches are stationary and do not move as the search progresses whereas the objects of 
SAR searches are often in motion. Survivors adrift on the ocean move with the winds 
and currents. Survivors on land often move to find shelter or improve their 
circumstances in some other way. When organizing a search, it is important to estimate 
the motion of the survivors and account for it in determining both where to search and 
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how to search. The frame of reference for any regular pattern of search must be fixed 
on the search object or at least the best estimate of its location and movement during 
the search effort. Otherwise, the results can easily be even worse than those of random 
search. 

 
1.6 Searching as Part of a SAR Response. When the SAR system is alerted that a SAR 

incident has, or may have, occurred, the information contained in the initial alert is 
usually incomplete. The alert may originate from a concern that a SAR incident may 
have occurred, making the very existence of the incident uncertain. Even when it is 
known that a SAR incident has occurred, the time, place, and nature of the incident may 
not be precisely known. Many other important pieces of information may be either 
missing altogether or known only within very broad limits. All this means the SMC is 
often initially faced with a mystery having few clues and some of those may be 
irrelevant, unreliable, or both. 

 
1.6.1 The way to solve a mystery, of course, is through investigative efforts; and 

investigative efforts generally proceed via a process of elimination. Most investigations 
follow a pattern like that shown below. 

 
1. Evaluate the initial clues. 
2. Develop initial theories, or scenarios, consistent with the clues, about what may 

have happened or what may be true. 
3. Actively seek more clues. 
4. Evaluate and rank all clues found to date according to relevance and reliability. 
5. Eliminate previous scenarios when they are no longer consistent with the 

accumulated body of evidence. Develop new scenarios, if needed, which are 
consistent with the accumulated body of evidence. 

6. Return to step (3) until the mystery is solved. 
 
1.6.2 One way to actively seek more clues is to search those areas where the search object 

may be located. Searches can provide either “positive” or “negative” clues.  
 
1.6.2.1 When actual evidence of the SAR incident or subsequent survivor movement is found, 

then the clues are “positive.” For example, finding debris that can be identified as 
belonging to a missing vessel is a positive clue that a SAR incident has occurred. 
Depending on the discovery, such evidence may also provide positive clues about the 
time, place and nature of the incident.  

 
1.6.2.2 Searching an area without finding anything is a “negative” clue. If the search was 100% 

effective, then it is clear that the search object was not in the area at the time of the 
search. This information may allow some previous scenarios to be eliminated. If the 
search object is known to be stationary, such results also eliminate the need to search 
the area again at a future time. Usually, searches are not 100% effective and so they 
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only reduce, rather than eliminate, the likelihood of the search object being in the area 
when it was searched. Even so, such a reduction is an indicator that perhaps future 
search efforts would be better expended elsewhere. Exactly how search effort should be 
allocated will be discussed in Chapter 6. 

 
1.6.3 Although searching can be the most expensive part of a SAR response, involving the 

most people and equipment, it must be viewed as only a portion of a larger operation. 
Other investigative efforts besides active searching should continue unabated. All of 
the available clues and information should be reviewed and re-evaluated at least daily. 
Plans need to be made for the next search effort in case the current effort fails. Other 
activities, as well as the search itself, need to be coordinated. Searching is really just 
one more investigative tool used to locate survivors. It is needed when other techniques 
have either failed or are not expected to produce results as early as may be necessary to 
save lives. 
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 Chapter 2 
 Basic Probability Concepts 
 
 
2.1 The Role of Probability in Search. Every SAR case involving a search is beset with 

uncertainties. At a minimum, the survivors’ location is uncertain; otherwise, there 
would be no need to search. Usually there are uncertainties in other important 
quantities, including such things as: 

 
· when, where and possibly whether a SAR incident actually occurred; 
· the direction and speed of survivors’ movements since their locations were last 

known; 
· the size and other characteristics of the search object affecting the ability of search 

facilities to detect it; and 
· environmental factors affecting search object motion, search facility sensor 

performance, and survivor behavior. 
 

These are just a few of the factors the search planner must take into account. The nature 
and impact of these uncertainties on search planning and operations can be understood 
quantitatively only in terms of the mathematical discipline known as probability theory. 

 
2.2 Elements of Successful Searches. For any search to be successful, two things must be 

true. First, searchers must be looking in the right place. Second, searchers must be 
capable of detecting the search object. Since the exact location of the search object is 
never known in advance, “looking in the right place” means searching areas that have 
at least some probability of containing the search object. Similarly, the searchers must 
be using sensors that have at least some probability of detecting the search object. If 
either of these probabilities is zero, the search is doomed to fail. Only if both 
probabilities are 100% is the search guaranteed to succeed. In actual operations, the 
probability of success lies somewhere between these extremes. In other words, the 
probability, or likelihood, that a search will succeed in locating the search object 
depends on two other probabilities: 

 
(1) the probability that the search object is actually in the area searched; and 
(2) the probability of detecting the search object if it is there. 

 
Each of these in turn depends on a number of other factors. For example, the ability to 
detect the search object depends on such things as the type and characteristics of the 
sensors used, the environmental conditions in the search area, the way the sensors are 
employed, etc. The likelihood of the search object being in the search area depends on 
the amount and accuracy of the information available about the circumstances of the 
case, the size and location of the search area, etc. These details will be discussed further 
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below. At this point in the discussion, it is sufficient to realize that success depends on 
both sensor performance and sensor placement. In the most general terms, the objective 
of search planning is to place the available sensors in the areas where the search object 
is likely to be. 

 
2.3 Probability of Containment. Probability of containment (POC) measures the likelihood 

of the search object being contained within the boundaries of some area. It is always 
possible to achieve a 100% probability of containment by just making the area larger 
and larger until all possible locations are covered. However, in practice, search 
facilities are usually limited and so the amount of area which can be effectively 
searched is also limited. For this reason, it is important for search planners to use all the 
available evidence about the SAR incident to do the following: 

 
· Eliminate as much of the earth’s surface as possible from the possibility area. That 

is, determine the smallest area, consistent with all the available facts, which 
contains all possible survivor locations. By this definition, the initial POC for the 
possibility area is 100%; 

· Within the possibility area, estimate which sub-areas are more likely to contain the 
survivors and which are less likely based on the available information; and 

· Quantify these estimates by assigning numeric POCs to the sub-areas. Initially, the 
sum total of all sub-area POC values should be 100% for the entire possibility area. 

 
Methods for estimating POCs and developing probability maps are discussed in 
Chapter 3. 

 
2.4 Probability of Detection. When performing a search under actual operational 

conditions, detecting and recognizing the search object is by no means a certain 
outcome. (From this point forward, the word “detection” when used without 
qualification will be taken to mean true detection with identification.) This is 
particularly true of SAR search objects which tend to be small and often do not contrast 
well with their surroundings. Such objects may be passed quite closely without being 
detected, even by vigilant searchers.  

 
2.4.1 Typically, the likelihood (probability) of detecting an object decreases with its distance 

from the searcher. Three specific detection models will be explored in some detail in 
Chapter 4. For now, we will discuss how probability of detection values should be 
interpreted for purposes of search planning and evaluation. 

 
2.4.2 Probability of detection (POD) is a measure of sensor performance in a particular 

search or, alternatively, a measure of how well an area has been searched.  
 
2.4.2.1 Under the first interpretation, POD describes the ability of a particular sensor to detect 

a particular type of search object under a given set of operational and environmental 
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conditions. For example, the POD for visual search from an aircraft flying a parallel 
track search pattern at 120 knots with a 3 nautical mile spacing between adjacent tracks 
at an altitude of 500 feet over the ocean in daylight in clear weather searching for an 
eight-person liferaft might be 75%. (Detection models are discussed in Chapter 4 and 
exactly how specific values for POD are estimated is discussed in Chapter 5.) As a 
measure of sensor performance, POD is independent of whether the object of a 
particular search is in an area covered by the sensor. In other words, POD only 
describes the ability to detect the search object if it happens to be in the area searched. 
This is called a conditional probability in the terminology of probability theory. A 
conditional probability has little value except when used in combination with the 
probability that the condition on which it is predicated is true. In the above example, 
the chances of the condition (liferaft in the area searched) being true are not known, so 
the chances of finding the liferaft during that particular search are also unknown.  

 
2.4.2.2 From the above example, it is easy to understand the second interpretation of POD as a 

measure of how well an area has been searched. If an area was searched under the 
circumstances described in the example, then there was a 75% probability (three 
chances in four) that an 8-person liferaft would be detected if one was in the area at the 
time the area was searched.  

 
2.4.3 It is important to realize that POD alone is not a valid measure of the search’s chances 

for success. It only measures how well a sensor performs or how well an area was 
searched. 

 
2.5 Cumulative POD. If the same area is searched multiple times, the chances of detecting 

any search object in the area are increased. The probability of detecting an object 
during at least one of the two searches is one minus the probability of failing to detect it 
on both searches. Probability theory tells us that the chances of two independent events 
both happening is the product of their probabilities. For example, the probability of 
flipping a coin and having it land with a particular side facing up is one chance in two 
or 0.5. The chances of flipping it twice and having the same side facing up both times is 
0.5 x 0.5, or 0.25. If the probability of detection for a search is 0.6, then the probability 
of failing to detect (PFail) is 1 - 0.6 or 0.4. If the POD on a second search of the same 
area is 0.7, then the PFail is 1 - 0.7 or 0.3. The probability of twice failing to detect an 
object that is there to be found on these two successive searches is the product of their 
two PFail values or 0.12. Therefore the cumulative POD for the two searches is 100% 
minus the probability of failing to detect on either of the two searches. That is, 1 - 0.12 
= 0.88 (88%). The following formula states the general principle in compact form, 

 
[2-1]  )POD-)(1POD-(1-1=POD 21c
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where PODc is the cumulative POD after two searches of the same area, POD1 is the 
POD of the first search and POD2 is the POD of the second search. This formula may 
be further generalized to accommodate any number of successive searches. 

 
2.6 Probability of Success. In paragraph 2.2 it was stated that the probability of success 

(POS) for a particular search depends on both the probability of the search object being 
in the area searched and the probability of detecting the search object if it is there. In 
other words, POS depends on both POC and POD. 

 
2.6.1 Probability theory tells us that the probability of two events in the same “sample space” 

both happening is the product of the two event probabilities. In searches, the “sample 
space” is the search area during the time when sensors are present and the two events 
are 

 
A = the search object being in the area searched; and 
B = the sensor detecting the search object. 

 
In the notation of probability theory 

 
[2-2] )AP(A)xP(B=B)P(A∩  

 
where  

 
P(A) represents the probability that event A (the search object being in the search area) 
is or will be true (POC); 

 
P(B|A) (read probability of event B happening assuming event A is true) represents the 
conditional probability that event B (finding the search object) is or will be true 
provided the object is in the search area (POD); and 

 
P(A∩B) (read probability of both A and B being true) represents the probability of 
finding the search object during the particular search being evaluated (POS).  

 
2.6.2 Using more familiar notation, 
 

[2-3]  POCxPOD=POS
 

That is, to find the probability of success for any search, simply multiply the 
probability of the search object being in the area searched by the probability of 
detecting the search object if it is there.  
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2.6.3 Predicted POC and POD values may be used to predict the POS for a planned search. 
Estimates of actual POC and POD values, based on actual conditions in the search area, 
the latest analysis of all available information, the amount of the intended search area 
actually covered, etc., may be used to estimate the actual POS of a search anytime after 
it has been completed. It is important to realize that the actual POS can never be known 
— only estimates of its value are possible and these may change with the passage of 
time as more information comes to light. For example, if a new clue is found following 
a search which indicates the original estimate of a search area’s POC was too high (or 
too low), then a new estimate of that area’s POC should be made and the associated 
POS value, and all subsequent POS values, should be recomputed, even if several days 
have passed between completing the search and finding the new clue. 

 
2.7 Importance of POS. The importance of POS is that unlike either POD or POC standing 

alone, POS is a valid measure of a search’s chances for success. That is, it is a valid 
measure of search effectiveness.  

 
2.7.1 Earlier, it was stated that the objective of search planning is to place the available 

sensors in areas where the search object is likely to be. Now this goal may be stated in 
more precise terms. 

 
 

The goal of search planning is to 
maximize the probability of success. 

 
Knowing this goal provides an opportunity for comparing alternative search plans and 
an explicit, computable criteria for deciding which of them is best. For example, if a 
search planner develops three different but attainable plans for a search and predicts 
their POS values to be 40%, 55%, and 50% respectively (based on the predicted POC 
and POD values for each plan), then the second plan (POS = 55%) is the one which 
should be used.  

 
2.7.2 While the second search plan may be the best of the three alternatives listed above, it 

still may not be the best possible search plan. In other words, it may be possible to 
develop another search plan, using the same search facilities looking for the same 
search object under the same environmental conditions, which has a predicted POS 
greater than 55%. A search plan which produces the maximum possible POS value 
using the available search facilities is said to be optimal. Using the available search 
facilities in a way that produces the maximum possible POS is called optimal effort 
allocation. We will return to these concepts and explain them in more detail in Chapter 
6. 

 
2.8 Adjusting POC. There is another important relationship between POC and POD 

besides POS. When an area is searched but the search object is not found, the 
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probability that the search object was in the area when it was searched is reduced by 
an amount proportional to the POD. For example, if the POC of an area was 60% 
before searching and it was then searched with a POD of 75%, the POC after 
searching would be only 15%. Stated as a formula, 

 
[2-4] ( )1PODxPOC=POC beforeafter  

 
It is important to adjust POC values after each search. Determining where to place 
the effort for the next search, predicting the POS for the next search, and computing 
the cumulative POS for all searching done to date all depend on updating the POC 
values to reflect the results of previous searching. More details on how to update 
estimated POC, POS and cumulative POS values are presented in Chapter 5. 

 
2.9 Cumulative POS. Cumulative probability of success (POSc) measures the 

likelihood of having found the search object based on the results of all searching 
done to date. Consider the following situation. The search object is known to be 
stationary. An area with an initial POC of 0.75 (75%) is searched with a POD of 0.6 
(60%). A second search of the same area is done with a POD of 0.7 (70%). In this 
situation, there are three ways to compute cumulative POS. 

 
2.9.1 When the same area is searched twice and there are no influences on the search 

object location probability distribution other than the searches themselves, the 
cumulative POD may be used to compute the cumulative POS. Using equation [2-
1], the value of PODc for this example is computed as, 

 
 ( )( ) 0.88=10.710.61=PODc  
 

or 88%, and using a slight modification of [2-3] to compute POSc, 
 
  0.66=0.75x0.88=PODPOCx=POS cc

 
or 66%. This method of computing POSc is NOT recommended because it is 
valid only under a very restrictive set of conditions which do not normally 
occur in actual operations. 

 
2.9.2 The second, and recommended, method for computing POSc, and one which works 

in all situations, is to compute the POS for each search, being sure to adjust the 
POC value for the search area to account for previous searching. The cumulative 
POS will just be the sum of the individual POS values. That is, 
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[2-5] 

POS POSc
All
Searches

= ∑
 

 
For example, using the same POC and POD values given above, the POS the first 
search is 

 
 , 0.45=0.75x0.6=PODxPOC=POS 101

 
or 45%. The POC for the area following this search is 

 
 , 0.3=0.75x0.4=)POD-(1POC=POC 101

 
or 30%. Computing the POS for the second search 

 
 , 0.21=0.3x0.7=PODxPOC=POS 212

 
or 21%. Adding the two POS values to get the cumulative POS, 

 
 , 0.66=0.21+0.45=POS+POS=POS 21c

 
or 66% as before. If searching is thought of as a way to remove, or subtract, 
probability from a distribution, then after the second search it could be said that of 
the original 100% probability in the possibility area before searching began, 66% 
has been removed, leaving 34% behind. Conversely, if it was known that the 
amount of probability remaining was 34%, it could be concluded that the value of 
POSc up to that point was 66%. This leads to the third method for computing POSc. 

 
2.9.3 The third method for computing POSc, which may also be used under any set of 

circumstances, is to adjust the POC of each area searched immediately following 
the search and use the updated POC as the entering argument for the next update. 
After all the POC values have been adjusted for all searches, the total probability 
remaining in the possibility area can be subtracted from 1.0 to get the cumulative 
POS. For example, using the same POC and POD values given above, the POC for 
the area following the first search is 

 
 . 0.3=0.75x0.4=)POD-(1POC=POC 101

 
That is, the POC of the area after the first search is 30%. For the second search, 

 
 . 0.09=0.3x0.3=)POD-(1POC=POC 212
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Now the POC for the area that has been searched twice is down to 9%. By 
definition, before any searching was done, the possibility area had a POC of 100%. 
The area that was searched contained only three-fourths of the total amount of 
probability or 75%. This means that 25% of the possible search object locations 
were never searched at all. So, the total POC for all areas outside the search area is 
still 25%. Adding this value to the 9% remaining in the search area produces a total 
POC for the original possibility area of 34%. Subtracting this from 1.0 gives 0.66 or 
66% just as in the other two examples. Stated mathematically, 

 

[2-6] 

POS POCc
All
Subareas

= − ∑1

 
 

In other words, if the all the current POC values, properly adjusted to reflect the 
results of all previous searching, are added together and subtracted from 1.0 
(100%), the result will be the current value of POSc. In computing the sum of all 
POC values, all subareas must be accounted for, regardless of whether or not they 
have been searched. This concept will be revisited in Chapter 6. 

 
2.10 Importance of POSc. Consider a situation where searchers have been looking for a 

search object for several days. At the end of the first day, the cumulative POS might 
be 60%, at the end of the second day it might be 80%, and at the end of the third 
day it might be 90%. Cumulative POS is important for the following reasons.  

 
2.10.1 First, POSc provides an indication of whether the search effort is being used in the 

right place. Achieving a high estimated cumulative POS value without finding the 
search object may mean the searchers are looking in the wrong place. All of the 
available information and clues should be carefully reviewed and analyzed in light 
of the continued lack of success to determine whether the search effort should be 
relocated.  

 
2.10.2 Second, cumulative POS provides an indicator of whether searching should 

continue. If the search planner is certain that the searchers are looking in the right 
place and the POS value is very high, then the chances of finding the survivors with 
further searching is correspondingly small. If the POSc value is estimated to be 
99%, then no matter how much more search effort is expended, the chances of 
finding the search object on a subsequent search must be estimated as no greater 
than 1%. Suspending active search operations is always a difficult decision which 
must be based on many factors. POSc should be one of the factors considered. 
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2.11 Historical Perspective. For many years, only one of the three probabilities (POC, 
POD, and POS) discussed above appeared in search and rescue manuals. POD and 
methods for estimating it for visual search based on the size and type of the search 
object, the height of the observer, and on scene environmental conditions appeared 
in search and rescue manuals, but neither POC nor POS were mentioned.  

 
2.11.1 The absence of POC and POS from the published search planning techniques does 

not mean these two probabilities were either unknown or unimportant to the 
developers of those techniques. In fact, POC and POS actually played a large role 
in the development of the simplified search planning method (SSPM), which has 
been used for many years. Certain assumptions were made about the nature of the 
distribution of search object location probabilities (from which the assumed POC 
values of search areas could be deduced), how searches would be conducted, and 
the PODs of the successive search efforts. An SSPM which produced optimal 
search plans (with maximum POS values) when all the assumptions were true was 
then developed and published for the SAR community’s use.  

 
2.11.2 Unfortunately, the concepts of POC, POS and the goal of maximizing POS were not 

presented to the SAR community in general. Even worse, the assumptions about 
POC, POD, and the conduct of searches on which the published SSPM was based 
often did not match the practical realities faced by search planners. Finally, the 
SSPM provided no flexibility or guidance for dealing with situations where its 
underlying assumptions were not true. As this paper progresses, the assumptions on 
which the SSPM is based are pointed out and the method’s limitations discussed. 
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 Chapter 3 
 Probability Density Distributions and Probability Maps 
 
 
3.1 Introduction. One of the first things to be determined when planning any search 

is where to search. A first approximation of where to search is the possibility 
area. Further refinements of the best area to search depend on how the search 
object location probability density is distributed within the possibility area, how 
much search effort is available, and how that effort is applied. This chapter 
concentrates on search object location probability distributions. Chapter 5 
discusses the concept of search effort and Chapter 6 discusses the planning of 
optimal searches. 

 
3.1.1 The possibility area is found by eliminating as much of the world as possible 

from consideration so that only those locations where the survivors could be, 
based on the available information, are included. Searching outside the 
possibility area clearly makes no sense since the POC is zero and hence the 
POS would also be zero. However, searching the entire possibility area also 
may not make sense if there are insufficient numbers of search facilities to 
cover it effectively or if some parts of the possibility area are significantly more 
likely to contain the survivors than other parts. In the latter case, the probability 
is not uniformly distributed over the possibility area. Intuitively, it would seem 
wise to concentrate the search effort in those areas where the probability 
density (amount of probability per unit area, or POC divided by the area) is 
highest. This is often, but by no means always, the case. Chapter 6 discusses 
how to determine the optimal area to search.  

 
3.1.2 Dividing the possibility area into subareas and assigning POC values to each is 

often difficult. Attempts to complete such a task with no guidance could easily 
degenerate into pure guesswork. Fortunately, there are some standard 
probability density distributions which can be used as guideposts. In the 
paragraphs that follow, we will examine some probability density distributions 
often used to describe a search object’s probable locations. The purpose is to 
become familiar with the major characteristics of these distributions. Such 
familiarity is necessary for understanding the theoretical basis for the search 
planning techniques recommended in practice. 

 
3.2 Datums. In surveying, map making and other endeavors involving 

measurements, it is often necessary to establish a datum or reference to be 
used as a basis for making the measurements. In land surveying, a precisely 
known location, or datum, is used as a starting point for the survey and all 
distances in the vicinity are referenced to that datum. Elevations and depths on 
most charts and maps use mean sea level as a datum. In search planning, 
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datums are used as references for determining where to search. Such datums 
may be represented by points, lines, or areas, depending on whether the SAR 
incident is known or believed to have occurred in the vicinity of a specific 
location, in the vicinity of a line, or somewhere in an area. Since there is always 
at least some uncertainty about the search object’s actual location, these 
datums are actually references for probability density distributions. 

 
3.3 Point Datums. When the SAR incident is known or believed to have occurred in 

the vicinity of a specific location or position, a point datum is used. The 
assumed probability density distribution for a point datum is the circular normal 
distribution. This a three-dimensional version of the standard normal distribution 
(or “bell curve”) found in any elementary probability or statistics text. When a 
group of points (x1,y1), (x2,y2),...,(xn,yn) is distributed in such a way that the xi 
have a normal distribution, the yi also have a normal distribution and the 
standard deviations of the two distributions are the same, then a circular normal 
distribution results, and vice versa. 

  
 The Simplified Search Planning Method (SSPM) assumes a 
 circular normal distribution of possible search object locations.  

 
For this reason, the circular normal distribution will be examined in detail below. 

 
3.3.1 Figure 3-1 illustrates the circular normal distribution. The grid represents x and 

y co-ordinates in the “plain” while the height of the “mountain” at any point 
represents the probability density at that point. The POC value for any circle 
centered on the datum point (or peak of the mountain) is found by 

 

[3-1] e1=POC 2
R2

 
 

where R is the radius of the circle in standard deviations and e is the base of 
the natural logarithms. If R is one standard deviation, then the POC is 

 
 0.39=10.61=e1=POC 2

1
 

 
or 39%. 
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 Figure 3-1 Probability Density Distribution for a Point Datum with Top View 
 
3.3.2 To find the POC of a square circumscribed about this circle it is necessary to 

use the standard normal distribution table which can be found in most 
probability and statistics texts or in books of mathematical tables. Such a table 
is reproduced in Appendix A (Table A-1) of this paper. If the radius of the circle 
is one standard deviation (σ), then the sides of the circumscribed square are 
two standard deviations in length and go from negative one standard deviation 
to positive one standard deviation as shown in Figure 3-2. The probability that a 
point represented by the ordered pair (x,y) is in the square is the joint 
probability that x is between plus and minus one standard deviation and y is 
also between plus and minus one standard deviation. Since the distributions of 
x and y values are both assumed to be normal, these probabilities may be 
computed from standard normal distribution tables as follows. Most tables give 
the area under the standard normal function from negative infinity to the value 
used to enter the table. The standard normal curve is symmetric about zero, so 
the probability of a normally distributed variate being less than zero is 0.5 or 
50%. The probability that it is between zero and one standard deviation is 0.84 
- 0.5 = 0.34 or 34% and the probability that it is between plus and minus one 
standard deviation is exactly twice this value or 68%. Therefore, the probability 
that x lies between plus and minus one standard deviation is 68%, the 
probability that y lies between plus and minus one standard deviation is also 
68% and the joint probability that both lie within these bounds at the same time 
is 0.68 x 0.68 = 0.47 or 47%. This makes sense since the square includes more 
area, and hence more of the distribution, than the circle. 
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 Figure 3-2 
 
3.3.3 Although the standard deviation is commonly used as a reference value in 

probability and statistics, in navigation the common reference is total probable 
error of position, usually denoted by E. Position errors are commonly assumed 
to have a circular normal distribution. The total probable error of position is 
taken to be the radius of the circle which has a POC of 50%. To determine the 
radius of such a circle, it is necessary to solve equation [3-1] above for R. 
Doing this produces 

 
[3-2] ( )1POC2=R ln  

 
where ln is the natural logarithm function. Substituting 0.5 (50%) for POC to 
find E gives 

 
 ( ) 1.1774.=0.52=E ln  
 

That is, a circle with a radius of about 1.18 standard deviations contains 50% of 
a circular normal distribution. 

 
3.3.4 Using the same technique as in subparagraph 3.3.2 above, the POC of a 

square circumscribed about a circle of this size can be computed. The 
probability of x being between 0 and 1.1774 standard deviations is 0.8805 - 0.5 
= 0.3805 so the probability that it lies between -1.1774 and +1.1774 is twice this 
value or 0.7610. The probability that both x and y lie within these limits is 0.761 
x 0.761 = 0.5791 or about 58%. These computations may be written more 
compactly as 

 
 ( )[ ] 0.5791=000.88050.502 2  



The Theory of Search Chapter 3  
 

  
 3−5 

 
or 57.91%. Figure 3-3 illustrates this situation. 

 

  
 Figure 3-3 
 
3.3.5 Using the standard normal distribution tables, it is possible to construct a 

probability map of a circular normal distribution. This is done by laying a grid 
over the distribution and computing the POC value for each cell in the grid. A 
probability map for a point datum is shown in Figure 3-4. In the last 
subparagraph, the computations for the POC of the central square in the grid 
were done. To illustrate how the values for the other grid cells were computed, 
the value for the shaded cell will be computed below. The probability that x lies 
between E and 3E is 0.9998 - 0.8805 = 0.1193. The probability that y lies 
between -E and +E is 0.7610. Therefore, the probability that the search object 
is in the shaded cell is 

 
  0.0908=6100.1193x0.7
 

or 9.08%. 

  
 Figure 3-4 Probability Map for a Point Datum 
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3.3.6 In the SSPM, it is recommended that the first search radius be 1.1 times the 
total probable error of position and that the first search area be a square 
circumscribed about a circle of that radius. The radius of such a circle is 1.1 x 
1.1774 = 1.2952 standard deviations. The POC of the circumscribed square, 
using standard normal probability tables, is 

 
 ( )[ ] 0.6477=000.90240.502x 2  
 

or about 65%. Figure 3-5 illustrates this situation. 
 

  
 Figure 3-5 
 
3.3.7 The SSPM assumes a POD of 79% on all searches. In Chapter 4, it will be 

shown how this value is computed based on a number of other assumptions. 
Allowing, for the moment, that this assumption is correct, the POS for the first 
search would be, using equation [2-3] from the last chapter, 

 
  0.5117=90.6477x0.7=POS
 

or about 51%. Achieving a POS of at least 50% on the first search may have 
been one of the goals of the developers of the SSPM. This goal and the 
assumption of a 79% POD would have led the SSPM developers to the 1.1 first 
search “safety factor” as it is called in that method or “optimal search factor” as 
it is called in the modern, improved search planning method (ISPM). Based on 
the assumptions which produce the 79% POD value (discussed in Chapters 4 
and 5), the resulting allocation of search effort is, in fact, very nearly optimal. It 
is unlikely that this is merely a coincidence. 

 
3.4 Line Datums. The simplified method, in its original form, was based solely on 

the point datum. It was extended to include situations where a vessel or aircraft 
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was known or suspected to have experienced a distress while traveling along a 
straight line connecting two points.  

 
3.4.1 The extension of the SSPM to include line datums was done as follows. For the 

first search, the total probable error of each position was estimated, multiplied 
by 1.1, and circles of the corresponding radii were drawn at the end points of 
the line and “boxed in” as shown in Figure 3-6. Figure 3-7 shows a three-
dimensional representation of the probability distribution implied by this 
technique. It was then assumed that searching the “boxed in” area with a 79% 
POD would produce the same results as searching the square recommended 
for point datums. It is relatively difficult to create the distribution shown in Figure 
3-6 and determine the results of searching areas of different lengths and widths 
so it is unlikely that these assumptions were ever verified.  

 

  
 Figure 3-6 
 

  
 
 Figure 3-7 Probability Density Distribution for a Line Datum 
 Connecting Two Point Datums with Top View 
 
3.4.2 It is reasonably easy, however, to create and work with a simpler but similar 

distribution. If it is assumed that the search object’s probable locations 
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perpendicular to the datum line are described by a normal distribution centered 
on the datum line, and that its probable locations parallel to the line are 
uniformly distributed between the two end points (and zero beyond them), a 
distribution like that shown in Figure 3-8 is produced. The probability of the 
search object being in any strip parallel to the datum line can be easily 
computed from standard normal tables. For example, the probability of the 
search object being within one standard deviation either side of the datum line 
is 

 
 ( ) 0.6826=000.84130.502  
 

or about 68%. 
 

  
 Figure 3-8 Probability Density Distribution for a Line Datum with Top View 
 
3.4.3 Another interesting computation is that which produces the POC for a strip 

centered on the datum line which has a width equal to twice the total probable 
error of position, E, as shown in Figure 3-9. The POC for this rectangle is 

 
 ( ) 0.7610=000.88050.502  
 

or about 76%.  
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 Figure 3-9 
 
3.4.4 Figure 3-10 shows a probability map for a line datum. The POC values for 

strips parallel to the datum line are computed using the standard normal tables. 
These strips were then divided along their length and assigned a fraction of the 
strip’s probability according to the width of the cell in proportion to the length of 
the strip. That is, if the cell’s width is one-tenth the length of the strip, then the 
cell is assigned one-tenth of the strip’s POC. 

 

  
 Figure 3-10 Example of a Completed Probability Map 
 for a Line Datum 
 
3.5 Area Datums. Sometimes the only thing known about a SAR incident’s location 

is that it occurred within some area with known boundaries. In this case, the 
probability of the search object being located in one place is the same as its 
probability of being located in any other place within the area. That is, the 
probability density is uniformly distributed over the area. This makes the POC 
of any subarea proportional to its size in relation to the size of the possibility 
area. If the possibility area is divided into five subareas of equal size, then each 
subarea would be assigned a POC of 20%. Figure 3-11 shows a three-
dimensional representation of a uniform distribution. Figure 3-12 shows a 
probability map for an area datum. 
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 Figure 3-11 Uniform Probability Density Distribution with Top View 
 
 

  
 Figure 3-12 
 
3.6 Generalized Datums. Sometimes none of the standard distributions seem to fit 

the circumstances of the case. In this situation, it is necessary to determine the 
possibility area, divide it into subareas suggested by the available information 
and finally assign estimated POC values based on a careful analysis of all 
available information. Figure 3-13 is a three-dimensional illustration how a 
generalized datum’s probability distribution might look. Figure 3-14 shows an 
example of a generalized datum probability map. 
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 Figure 3-13 Generalized Probability Density Distribution with Top View 
 
 

  
 Figure 3-14 
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 Chapter 4 
 Detection Models, Lateral Range Curves and Sweep Width 
 
 
4.1 Introduction. This chapter discusses the characteristics of three specific 

detection models. They are definite range, M-Beta, and inverse cube. The first 
and simplest model is used to illustrate the concepts of lateral range curves and 
sweep width, applied to all three models. This chapter restricts its attention to 
the sensor models and the characteristics of their lateral range curves. In the 
next chapter, the performance of these models in search patterns consisting of 
equally spaced parallel tracks is examined. 

 
4.2 Lateral Range Curves. Consider the situation where a sensor is moving through an area 

and the relative motion between the sensor and any search object in the area is a 
straight line. The lateral range, x, is the perpendicular distance from the sensor’s 
relative track to the object, which is the same as the object’s distance from the sensor at 
the closest point of approach (CPA). A lateral range curve describes the cumulative 
probability that an object will be detected as it passes once completely through the 
sensor’s instantaneous detection envelope as a function of the object’s lateral range x. 
Sensors may be classified by the nature or shape of their lateral range curves. Figure 4-
1 shows a number of different lateral range curves. The significance of the dimension 
W on each of the curves in Figure 4-1 will become clear in the following paragraphs. 

 

  
 
 Figure 4-1 
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4.3 Sweep Width. Sweep width has the following interpretation. Assume the lateral 
range function is denoted by p(x). If the sensor moves in a straight line through 
a population of objects uniformly distributed over the surface (N per unit area 
on the average) with either all at rest or all moving at the same vector velocity 
(so the relative motion between the sensor and all objects lies along straight 
parallel lines with a relative speed w), the average number Ns detected per unit 
time in any strip between the lateral ranges x1 and x2 depends on both the 
distance and the average value of p(x) between x1 and x2 as well as the object 
density N and the relative velocity w. Specifically, 

 
[4-1]  )x,x(Nwp)x-x(=N 21avg12s

 
where the width of the strip (x2 - x1) times the object density N times the relative 
velocity w gives the number of objects in that strip passed per unit time and 
pavg gives the fraction of those objects which are detected. However, in 
mathematical terms, the expression 

 
  )x,x(p)x-x( 21avg12

 
is simply the area under the lateral range curve between x1 and x2. This means 
that the total number of objects NT detected per unit time is Nw times the total 
area under the lateral range curve. That is, 

 

 . ( )dxxpNw=N
+

T ∫
∞

∞

 
4.3.1 The area W under a sensor’s lateral range curve is called the effective search 

(or sweep) width. If the lateral range function is p(x), then 
 

[4-2]  p(x)dx=W
+

∫
∞

∞

  
The sweep width equals the area under the lateral range curve. 

 
4.3.2 Equation [4-2] provides one means of comparing sensors. Two sensors having 

the same sweep width are “equivalent” in the following restricted sense. 
Consider two identical, infinitely large, uniformly distributed sets of objects J1 
and J2 and two distinct sensors K1 and K2 with different lateral range curves but 
equal sweep widths. Sensor K1 will pass once through J1 and sensor K2 will 
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pass once through J2. Both will have the same relative velocity w with respect 
to the search objects. Regardless of any differences in the shapes of their 
lateral range curves, each sensor will detect the same number of objects, on 
average, per unit time. Although sweep width is a useful concept, this definition 
of “equivalence” between sensors has limited practical value and can be very 
misleading if applied to realistic, as opposed to purely theoretical, situations. 

 
4.3.3 It could be said that a sensor with a larger sweep width is “better” than one with 

a smaller sweep width because it can detect more objects per unit time during a 
single sweep through an infinitely large area with a uniform distribution of 
search objects. In this sense, sweep width is at least a partial measure of the 
ease or difficulty of detection. However, most searches are performed by 
moving the sensors through limited areas along equally spaced parallel tracks 
where the spacing between tracks is of the same order of magnitude as the 
sweep width. The cumulative probability of detecting an object in such an area 
after all the parallel sweeps have been completed is highly dependent upon 
both the sweep width and the shape of the sensor’s lateral range curve. 

  
The practical value of the sweep width concept lies in its usefulness for determining 
the amount of available search effort and the optimal track spacing in search patterns 
that employ parallel tracks. Both of these uses are explored in Chapters 5 and 6. 

 
The remainder of this chapter examines three specific types of lateral range 
curves. In the next chapter, the relationship between lateral range curve shapes 
and corresponding PODs of parallel track search patterns is discussed using 
the lateral range curves described below. 

 
4.4 The Definite Range Model of Detection. A definite range sensor is one that is 100% 

effective out to some definite lateral range from the sensor and completely ineffective 
beyond that range. That is, the probability of detection p(x) for search objects within 
the definite range, rdef, is 100% while the POD for search objects further away is zero. 
Stated mathematically, the lateral range function is 

 
( ) 1.0=xp  if r+xr defdef ≤≤  

[4-3] 
( ) 0.0=xp  if r-<x def  or r+>x def  

 
Figure 4-2 illustrates this characteristic where p(x) is graphed as a function of lateral 
range x. Note that the definite range is also the maximum detection range, rmax, for this 
type of sensor. 
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 Figure 4-2 
 
4.4.1 Computing the area under the lateral range curve shown in Figure 4-2 is a 

simple matter due to its rectangular shape. The height of the rectangle is 1.0 
(100%) and the width is 2rdef so the sweep width is 

 
  r2=r1.0x2=W defdef

 
Note that if the sensor is moved in a straight line, it will sweep an area whose 
width is 2rdef as shown in Figure 4-3. In this case, the width of the swept area is 
exactly equal to the sweep width, W. That is, for definite range sensors, the 
sweep width is literally the width of the swept area. From another point of view, it 
can be said that the sweep width of any sensor is the width a definite range sensor 
would have to sweep in order to detect the same number of objects per unit time in a 
uniform distribution of search objects. 

 

  
 Figure 4-3 
 
4.4.2 It is now possible to write the lateral range function in terms of the sweep width. 
 

( ) 1.0=xp  if 
2

W+x
2

W
≤≤  

[4-4] 

( ) 0.0=xp  if 
2

W-<x  or 
2

W+>x  
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Expressing lateral range functions in this manner will be useful when comparing the 
performance of different sensors when used in parallel track search patterns. 

 
4.5 M-Beta Detection Model. An M-Beta model is one that has a rectangular lateral range 

curve like the definite range model, except that the height of the rectangle is some 
value M between 0 and 1 and the width of the rectangle is some value β. The maximum 
detection range, rmax, is then β/2. In fact, the definite range model is a special case of 
the M-Beta model where the uniform probability within the maximum detection range 
is 1.0 (100%) and rmax = rdef. The M-Beta model is more general than the definite range 
model in that it can accommodate any probability (M) greater than 0 and less than or 
equal to 1 between x = -rmax and x = +rmax. The general form of the M-Beta lateral 
range function is 

 
( ) M=xp  if  r+xr maxmax ≤≤  

[4-5] 
( ) 0.0=xp  if r-<x max  or r+>x max  

  
4.5.1 Figure 4-4 shows an M-Beta lateral range curve where M is only half as large as the 

definite range model (50% vs. 100%) but the maximum detection range is twice as 
large (rmax1 = 2rdef ). Hence, the height of the rectangular area under the lateral range 
curve is 0.5 (50%), the width is 4rdef and the sweep width is computed as 

 
  r2=r0.5x4=r0.5x2=W defdef1max

 
which is exactly the same as the sweep width of the definite range sensor. This leads to 
the following observation. 

  
The sweep width of any sensor is equal to twice the detection range of an equivalent 
definite range sensor, where “equivalent” means that each of the two sensors detects 
on average the same number of uniformly distributed search objects, each having 
relative velocity w, per unit time. 
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 Figure 4-4 
 
4.5.2 Note in the above example that both rmax1 and W are equal to 2rdef. This means that  

rmax1 = W. Writing the lateral range function in terms of W for this sensor leads to 
 

( ) 0.5=xp  if +WxW ≤≤  
[4-6] 

( ) 0.0=xp  if  or  W-<x +W>x
 
4.5.3 Figure 4-5 shows another M-Beta lateral range curve. This time, M is 0.25 (25%) and 

the maximum detection range is four times that of the definite range model (rmax2 
=4rdef). Again, because the maximum detection range has changed in inverse 
proportion to the change in M, the sweep width remains the same. 

 
  r2=r0.25x8=r0.25x2=W defdef2max

  
 Figure 4-5 
 
4.5.4 Now, rmax2 = 2W so the lateral range function in terms of W becomes 
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( ) 0.25=xp  if +2Wx2W ≤≤  
[4-7] 

( ) 0.0=xp  if  or  2W-<x +2W>x
 
4.6 Inverse Cube Model. Both the definite range and M-Beta detection models are 

very simple and even useful for theorists. However, they are not realistic 
models of very many actual sensors, with the possible exception of certain 
electronic sensors under certain conditions. This was even more true when 
search theory was first being developed. Fifty years ago, electronic sensors 
were in their infancy and the exploration of their capabilities was just beginning. 
The human observer, searching visually, was still the primary sensor, just as in 
SAR today. It was clear even in the 1940s that neither of the above models was 
a good description of visual detection. A better description was sought and the 
inverse cube model was the result. 

 
4.6.1 Even though humans had been using their eyes to search for objects for tens of 

thousands of years, by the 1940s when search theory was first being 
developed, little or no formal scientific research had been done on visual 
detection, at least not as it related to organized searching. As a result, the 
search theorists were left with no choice but to develop an empirical model. 
Koopman’s research at that time was being done for the U.S. Navy and this is 
reflected in the assumptions that went into the model’s creation. The basic 
assumptions were 

 
· the search objects are warships underway; 
· the search facility is a patrol aircraft flying at height h above the ocean; 
· the mode of detection is an observer in a patrol aircraft sighting the 

warship’s wake; 
· the instantaneous (one glimpse) probability, γ, of sighting the vessel’s wake 

is proportional to the solid angle subtended at the observer’s eye by the 
wake’s visible area. 

 
4.6.2 The last assumption is illustrated in Figure 4-6 where it is assumed the wake is 

a rectangle of length a toward the observer and width b perpendicular to the 
direction of observation. The infinitesimal solid angle is the product of the angle 
α subtended by a, and the angle β subtended by b. The radian measure of α is 
c/s. By similar triangles, c/a = h/s and hence α = ah/s2. The radian measure of β 
is b/s. Hence, the solid angle αβ = abh/s3 = the area, A, of the rectangle times 
h/s3 or Ah/s3. The actual area A of the search object’s wake may not be 
rectangular in shape but can be regarded as made up of a large number of 
rectangles like the above, the solid angle being the sum of the corresponding 
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solid angles. Hence, when the dimensions of A are small in comparison with h, 
r, and s, we have the formula 

 

[4-8] 
)r+h(

Ah=
s
Ah

2
3

22
3

. 

 
Since γ is assumed to be proportional to the solid angle, 

 

[4-9] ,
)r+h(

kh=
s
kh=

2
3

22
3

γ  

 
where the constant of proportionality, k, depends on all the factors we regard as 
fixed without introducing explicity, such as contrast of wake against ocean, 
observer’s ability, meteorological conditions, etc.; and of course k contains A as 
a factor. Dimensionally, k = [L2T-1], or area per unit time. In the majority of 
cases, r is much larger than h, and equation [4-9] can be replaced by the 
satisfactory approximation 

 

[4-10] 
r
kh=

3
γ . 

 
It is from this formula that the inverse cube model of visual detection gets its 
name. Translated into words, the formula states that the instantaneous 
probability γ that the search object will be detected is inversely proportional to 
the cube of the range r from the observer to the object 
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 Figure 4-6 
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4.6.3 In the previous examples (definite range and M-Beta), a lateral range curve 
was assumed outright and without regard to the instantaneous detection 
characteristics of the sensor itself. However, with the inverse cube sensor, a 
function that describes the instantaneous detection probability has been 
developed. It is now necessary to determine the lateral range curve which will 
result when a sensor with this instantaneous detection function is moved along 
a straight line relative to the search objects. Finding this lateral range curve 
requires some relatively involved mathematics which may be found in Koopman 
[1]. Here the result, based on [4-10] above, will be stated without a formal 
derivation. 

 
[4-11] ( ) e1=xp wx

2kh
2  

 
Integrating [4-11] to find the sweep width (which requires a change of variable 
and integration by parts, steps which are not shown), 

 

[4-12] 
w
kh22=dxe1=W wx

2kh
+

2
π

∫
∞

∞

. 

 
It is now possible to write [4-11] as a function of W. 

 

[4-13] ( ) e1=xp x4
W

2

2

π  
 
4.6.4 The graph of [4-13] appears in Figure 4-7. Note that the “tails” of this bell-

shaped curve approach the x axis from above as an asymptote. This means 
that although p(x) becomes vanishingly small as x increases without bound, it 
never quite becomes exactly zero. Therefore, the maximum detection range, in 
theory, is infinite. Also note that as the lateral range x approaches zero, p(x) 
approaches 1.0 (100%). 

 



The Theory of Search Chapter 4  
 

  
 4−11 

  
 Figure 4-7 
 
4.7 Importance of Sweep Width. In paragraphs 4.4-4.6 above, three different 

sensor types and their lateral range functions were examined. It is now possible 
to note some common characteristics in how each relates to its associated 
sweep width.  

 
4.7.1 If the lateral range function and sweep width are known for a particular sensor, 

search object, and set of environmental conditions, then the probability of 
detecting the search object at a particular lateral range may be computed. This 
in turn will allow search planners, as shown in the next two chapters, to 
determine the best track spacing to use in a parallel track search pattern. 

 
4.7.2 Another item worthy of note is that the formula for the sweep width W in [4-12] 

involves not only the height of the observer h and the relative speed w, but the 
constant of proportionality k which in turn involves a great many other factors. 

  
Sweep width depends on all the characteristics of the sensor, search object, 
and environment which affect detection. 
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A very small sampling of the factors affecting sweep width for visual search 
includes 

 
· for the observer: training, visual acuity, fatigue, distractions of other duties, 

etc.; 
· for the search object: size, color, contrast with surroundings, use of visual 

signaling devices (e.g. lights, flares, smoke, dye), etc.; 
· for the environment: visibility, lighting conditions, sea state or type of terrain, 

etc. 
 

There are also many interdependencies among these factors. For example, 
rough seas will increase fatigue among searchers aboard a vessel as well as 
make it more difficult for them to see small objects on the ocean’s surface. In 
general, larger objects have larger sweep widths, sweep widths are higher for 
the same object when the air is clear than when it is hazy, higher for well-rested 
observers than for tired ones, higher in smooth terrain with little vegetation than 
in rough, heavily forested terrain, etc. 

 
4.8 Assessing the Inverse Cube Model. Although the assumptions on which the 

inverse cube model is based are clearly not valid in the vast majority of SAR 
searches, this is the model on which all SAR search planning has been based 
for the last 50 years or so.  

 
4.8.1 The main advantage of the inverse cube model is that unlike the definite range, 

M-Beta, or models developed for electronic sensors, it is based on a physical 
model, however crude or inaccurate, of visual detection under operational 
conditions. Unfortunately, few if any attempts have been made to determine the 
true instantaneous visual detection function for any search objects, large or 
small, under any environmental conditions. This is not too surprising since so 
many factors can affect visual detection in so many ways that building a really 
accurate model of the instantaneous detection function may not be practical. 

 
4.8.2 The amount of data required to infer a sweep width or lateral range curve 

directly is orders of magnitude less than that required to develop an 
instantaneous detection model. As a result, some attempts have been made to 
obtain better estimates of sweep width and the factors affecting it. This has 
been done by recording the ranges at which various search objects are 
detected under various conditions. The most notable of these attempts have 
been experiments conducted over the past two decades by the U. S. Coast 
Guard Research and Development Center. The data that have been collected 
have been used to develop gross estimates of lateral range curves and 
corresponding sweep width values. However, the use of these values in 
practice is still based on the assumption that the inverse cube model is valid in 
all situations. Under ideal conditions involving parallel sweep searches for 
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typical SAR search objects of moderate to large size, the inverse cube model 
often predicts the POD surprisingly well. However, for poor conditions or small 
search objects, the inverse cube model is a poor predictor of POD, being 
generally too optimistic. Fortunately, there is a practical way to deal with this 
problem using the theory of “random search” and it will be explored in the next 
two chapters. 
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sChapter 5 
Searching Areas 

 
 
5.1 Introduction. As a practical matter, searching is done in areas of limited size. It 

is common to speak of expending “search effort” and “covering” an area. These 
terms have already been used in previous chapters in a rather vague, generic 
way. However, the terms search effort and coverage have mathematically 
precise definitions in search theory. Both definitions involve sweep width either 
directly or indirectly and this chapter will begin with these topics. Next, there is 
a discussion of random search which also has a mathematically precise 
formulation. Random search is examined for three reasons. First, it has value 
as a benchmark or baseline against which organized search techniques may be 
compared and judged. Second, it will be shown that certain types of lateral 
range curves produce nearly the same results as would be obtained by random 
search, even when used in a highly organized, orderly fashion. Third, the 
random search curve may actually be a reasonable estimator of POD when all 
the unknowns (randomness) involved in actual search operations are 
considered. The remainder of the chapter will then be devoted to the study of 
how the sensors whose lateral range curves were studied in the previous 
chapter perform when used with parallel track search patterns to cover limited 
areas.  

 
5.2 Search Effort. The word “effort” has many meanings and just as many methods 

of measurement. Ask a pilot how much effort is required to do a certain search 
and the answer is likely to be given in terms of flight hours required or number 
of trackline miles that must be flown to complete the assigned search pattern. 
However, this will not be a very good measure of how much searching will be 
done. If two different searches are the same in all respects except that the 
sweep width in one is twice what it was in the other, then in some sense twice 
as much searching was done in the search with the larger sweep width as 
compared to the search with the smaller sweep width. In search theory search 
effort is defined as follows. 

  
Search Effort (Z) is equal to sweep width times trackline miles in the search 
area, or alternatively, sweep width times search speed times hours spent in 
the search area. 

 
That is, mathematically, 

 
[5-1]  WxL=Z
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where Z is the search effort, W is the sweep width and L is the trackline length, 
or distance traveled, by the sensor within the search area. Equivalently, 
[5-2]  WxVxT=Z

 
where Z is the search effort, W is the sweep width, V is the search speed, and 
T is the amount of time the sensor spent in the search area. The units of 
measure for search effort are those of area (e.g. square nautical miles). 
Loosely speaking, search effort may be thought of as the amount of area which 
can be effectively swept. 

 
5.3 Coverage. While search effort may define how much area can be swept, it 

doesn’t indicate whether the search facility spent its time in a small area doing 
a highly concentrated search or in a large area doing a more cursory search. In 
the first situation, it would be natural to say the “coverage” of the area was 
“high” and in the second case it would be just as natural to say it was “low.” A 
mathematically precise way to compare the two “coverages” is to compare the 
amount of search effort (as defined above) expended in each area to the size of 
that area. The most appropriate way to compare search effort with search area 
is to take the ratio of these two quantities. This produces the following definition 
for coverage. 

  
 Coverage is the ratio of the search effort to the area searched. 

 
Expressed mathematically, this definition becomes 

 

[5-3] 
A
Z=C  

 
where C is the coverage (sometimes called coverage factor), Z is the search 
effort as defined in paragraph 5.2 and equation [5-1] or [5-2] above, and A is 
the area that was covered by the search effort. The quantities Z and A must be 
expressed in the same units of measure (e.g., square nautical miles), so C is a 
unitless quantity. 

 
5.4 Random Search. In Chapter 1 it was observed that common experience and 

intuition indicate a search which follows some organized plan or pattern has a 
greater chance of succeeding than just looking around at random. This is 
because with an organized approach, an approximately uniform coverage of 
the area being searched can be guaranteed while with random searching it is 
likely that some spots will be covered at least twice and others won’t be 
covered at all. As a result, some effort will be wasted. However, randomness in 
searching need not always be the fault of the searcher. Recall that in Chapter 
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4, the concepts of lateral range curves and sweep widths were based on the 
assumption that the relative motion between the observer and the search object 
was a straight line. If the search object is in motion, then any randomness in 
that motion will introduce randomness in its track relative to an observer. This 
situation is common in SAR where there is often a great deal of uncertainty 
about survivor movements while searches are in progress following a distress 
incident. For example, survivors adrift on the ocean move with the winds and 
currents. While some limited success has been achieved in predicting average 
drift motion over moderately long periods (from one to a few days), the motion 
of a drifting object on shorter time scales can be, and usually is, quite 
convoluted and “random.” This is not surprising since a large random element 
would be expected in the motion of a small solid object suspended at the 
turbulent interface between two huge fluid masses (the ocean and the 
atmosphere). In any event, there are also myriad additional sources of 
randomness in SAR operations including navigational error, wind shifts, 
weather changes, and various distractions and unexpected events during the 
search. The frequently quoted line, “The best laid plans of mice and men oft go 
astray.” is a poet’s accurate observation that almost all humanly planned 
endeavors are subject to unavoidable random factors and are rarely completed 
exactly as intended. 

 
5.4.1 To derive a formula for the probability of detecting a search object in an area 

under conditions of random search, consider the following three assumptions: 
 

1. The search object is in an area of size A, is motionless, and has a location 
probability density that is uniformly distributed throughout the area. 

2. The observer’s path in the area is random in the sense that it can be 
thought of as having its different (not too near) portions placed 
independently of one another in the area. 

3. On any portion of the path that is small relative to the total length of the path 
but decidedly larger than the range of possible detection, the observer 
always detects the search object if it is within the lateral range W/2 on either 
side of the path and never detects search objects beyond that range. 

 
Now suppose the observer’s path of length L is divided into n equal portions 
each of length L/n. If n is large enough that most of the pieces are randomly 
related to any particular one, the chance of failing to detect during the whole 
path is the product of the chances that detection will fail during motion along 
each piece. If, further, L/n is such that most of the pieces of this length are 
practically straight and considerably longer than the range of detection, then 
because the sensor is of the definite range type, the chance of detection is 
equal to the probability of the object being in the area swept. The area swept is 
simply WL/n and the probability of the object being in the swept area is WL/nA. 
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The chances of the observer not detecting the search object (i.e. the PFail) is 
then 1- WL/nA. The product of all these PFail values is the probability that no 
detection will take place anytime during the entire search. Therefore, the 
probability of detection (POD) for the search is given by 

 
 

[5-4] ,
nA
WL11=POD

n

⎟
⎠
⎞

⎜
⎝
⎛  

 
or, for large n, 

 
[5-5] .e1=POD A

WL
 

 
From equations [5-1] and [5-3] it is seen that the expression for coverage may 
be written as 

[5-6] .
A

WL=C  

 
Hence, [5-5] may be rewritten as 

 
[5-7]  e1=POD C

 
which is the random search formula in its simplest form. The graph of this 
function is shown in Figure 5-1. 
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5.4.2 The random search formula has some interesting properties. However, before 
examining these, it is important to observe a subtle difference between this 
chapter and the last. In Chapter 4, the main topics were lateral range functions 
which describe the probability of detecting a search object based on its lateral 
range from the observer’s track. Equation 5-5 describes the probability of 
detection in an area and is not the formula for any lateral range function even 
though it’s appearance is superficially similar to that of the inverse cube model. 
In this chapter, as in Chapter 2, probability of detection when used without 
qualification refers to POD — the probability of detecting a search object if it is 
in the area being searched. 

 
5.4.3 One of the random search formula’s more interesting properties is that it is 

solely dependent on the coverage C. The dependence of C on the lateral range 
curve is in turn limited to W which only depends on the area under the lateral 
range curve and no other characteristics. Thus, even though a definite range 
model was used to derive the random search formula, it is valid for virtually any 
reasonable detection model and certainly for any where p(x) is maximum at x = 
0 and decreases monotonically as |x| increases. 

 
5.5 Parallel Sweep Searches. The most common method of covering an area with 

search effort is to do a series of parallel sweeps. Figure 5-2 shows a typical 
parallel sweep (PS) search pattern. The dashed rectangle represents the 
search area. There are many practical benefits to conducting search operations 
in such an orderly fashion. One of those benefits is the ability to achieve a 
higher POD, and consequently a higher POS, in an area than would be 
achieved by random, disorganized searching. To see when and why this is true, 
the paragraphs that follow will compute parallel sweep POD values for several 
coverages for each of the lateral range curves examined in Chapter 4. The 
results will then be graphed and compared to the random search curve 

. 
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 Figure 5-2 Parallel Sweep Search 
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5.6 Definite Range Model. Evaluation of the performance of this and the other 
detection models in parallel sweep searches will be done as follows. Several 
copies of the model’s lateral range curve will be placed next to each other so 
that the distance from the center of one to the center of the next is equal to the 
track spacing for which the POD is being evaluated. In some cases, the lateral 
range curve from one track may overlap those from other tracks. In these 
cases, each detection opportunity will be treated as an independent event (like 
each toss in a series of coin tosses) and the POD in the space between the 
centermost two tracks computed accordingly. PODs for each of several track 
spacings (coverages) will be computed and then fitted with a curve which will 
be compared to the random search POD curve and the POD curves derived 
from the other lateral range curves. 

 
5.61 As seen in the last chapter, the lateral range curve for the definite range model 

is a simple rectangle of height 1.0 and width W centered on the sensors track. 
Placing two tracks next to one another with a distance between them of 2W 
produces the condition shown in Figure 5-3. Note that at this track spacing, one 
half of the space between the tracks is covered and any object in this space 
that is also within W/2 of one of the two tracks will be detected. Objects in the 
central region that has a width of W will be missed. Both the coverage of the 
area between the tracks and the POD are 0.5. If the tracks are moved closer 
together so that the distance between them is only W, the lateral range curves 
from the two tracks abut one another as shown in Figure 5-4. In this case, both 
the coverage and the POD are 1.0. Pushing the tracks even closer together will 
produce no benefit in this case since the POD is already at its maximum value 
of 100%. The graph of the definite range POD function is plotted in Figure 5-5 
along with the random search POD function for comparison. 

 

  
 
 Figure 5-3 
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 Figure 5-4 
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5.6.2 The definite range POD curve has several interesting properties. The first is 
that for coverages between 0 and 1.0 it is linear with a slope of 1.0 from the 
origin to (1,1). Second, because the definite range model is in some sense a 
“perfect” sensor, the definite range POD curve forms an upper bound for what 
can be expected of sensors employed in parallel sweep searches. Recall that 
the random search POD curve forms a lower bound on what should be 
expected of organized search efforts. It is anticipated, therefore, that the POD 
curves associated with all other models will fall between these two curves when 
used in parallel sweep search patterns. 

 
5.6.3 Another observation may be made. For the definite range model, the ratio of 

the sweep width to the track spacing was exactly equal to the coverage. This 
provides a convenient shortcut method of computing the coverage for parallel 
sweep searches, namely 

 

[5-8] 
S

W=C  

 
where C is the coverage, W is the sweep width, and S is the track spacing. The 
equivalence of this formula to [5-6] is easily shown and therefore it may be 
applied to all parallel sweep searches, regardless of the lateral range function 
in effect. 

 
5.7 M-Beta Model. In Chapter 4, two M-Beta lateral range curves were described. 

Some representative POD values for different coverages will now be computed 
for each of these. 

 
5.7.1 Consider the M-Beta lateral range function from 4.5.2 where 
 

( ) 0.5=xp  if +WxW ≤≤  
[5-9] 

( ) 0.0=xp   if  or . W-<x +W>x
 

Figure 5-6 depicts the lateral range curves for two adjacent tracks which are 
spaced a distance of 2W apart. Note that the lateral range curves just touch 
one another which means all of the space between the tracks is being searched 
with a POD of 0.5. The coverage is also 0.5 and so, up to this point, the 
performance of this sensor is just as good as that of a definite range sensor. 
However, when the track spacing is decreased to W, making the coverage 1.0, 
the lateral range curves from the two adjacent tracks overlap and both 
completely cover the space between the two tracks. The cumulative POD in 
this space is 
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 ( )( ) 0.75=10.510.51=POD , 
 

which is well below the value for the definite range model (1.0) but still above 
the random search value (0.63) for this coverage. Pushing the tracks even 
closer together so that the spacing is only W/2 and the coverage is 2.0 causes 
the lateral range functions of four tracks to overlap and completely cover the 
spaces between tracks. For this situation, the POD is computed as 

 
 ( ) 0.9375=10.51=POD 4 . 
 

 
 Figure 5-6 
 
5.7.2 The other M-Beta model examined had a lateral range function given by 
 

( ) 0.25=xp  if +2Wx2W ≤≤  
[5-10] 

( ) 0.0=xp  if  or  2W-<x +2W>x
 

In this case, the M-Beta model has the same POD values as the definite range 
model up through a coverage of 0.25. When the coverage is 0.5, lateral range 
curves from two adjacent tracks overlap, giving a POD of  

 
 ( ) 0.4375=10.251=POD 2 , 
 

which is closer to the random search curve ( POD = 0.3935) than it is to the 
other two models (POD = 0.5). For a coverage of 1.0, 

 
 ( ) 0.6836=10.251=POD 4 , 
 

which is again closer to the random search curve (POD = 0.6321) than it is to 
the definite range (POD = 1.0) or the previous M-Beta (POD = 0.75) model. 
Finally, for a coverage of 2.0, 
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 ( ) 0.8999=10.251=POD 8 , 
 

as compared to a definite range POD of 1.0, a POD of 0.9375 for the first M-
Beta model and a random search POD of 0.8647. The POD graphs 
corresponding to these two variations on the M-Beta model are shown in Figure 
5-7. 
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 Figure 5-7 
 
5.7.3 From the above examples, it is easy to see that the general formula for 

computing parallel sweep POD values for the M-Beta model is 
 

C=POD  if , M<C
[5-11] 

( )1M1=POD M
C  if  MC ≥

It is also clear from the graphs of the examples that as M decreases in value, 
the corresponding POD function for parallel sweep searches approaches the 
random search curve. To see why this is true mathematically, it is only 
necessary to compare equations [5-4] and [5-11] for C ≥ M. Note that the two 
expressions to the right of the equals sign have similar forms. In fact, doubling 
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the value of n in [5-4] doubles the exponent while halving the value of WL/nA 
which occupies the same position as M in [5-11] when C ≥ M. Similarly, halving 
the value of M in [5-11] has exactly the same effects. Therefore, as M becomes 
small, the POD function for M-Beta sensors performing parallel path searches 
approaches  

 
 , e1=POD C

 
which is the random search function. In geometric terms, as the lateral range 
function becomes lower, flatter, and more spread out, the more closely its 
parallel sweep POD function will approach that of random search. Intuitively 
this also makes sense because the accurate spacing of low, flat and very wide 
lateral range curves in relation to one another should not provide nearly as 
much benefit over random search as it does for high, peaked, and very narrow 
lateral range curves. This is an important observation which will be useful later 
in this chapter when dealing with how POD is affected by random influences 
such as navigational errors during the performance of parallel sweep searches. 

 
5.8 Inverse Cube Model. Computing the POD in the space between the tracks in a 

parallel sweep search is conceptually the same for the inverse cube model as it 
was for the M-Beta model above. The differences lie in the difficulty of the 
computations (because p(x) now varies continuously with the lateral range x 
instead of being either a constant value or zero) and the infinite (in theory) 
maximum detection range of the inverse cube model. The latter condition 
requires the assumption that there are infinitely many equally spaced parallel 
tracks being considered (again, in theory). As with the derivation of the inverse 
cube lateral range function in the previous chapter, the reader is referred to 
Koopman [1] for the derivation of the inverse cube POD function for parallel 
sweep searches. Only the end result is provided here.  

 
5.8.1 For an inverse cube sensor, the POD for a parallel sweep search is given by 
 

[5-12] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

S
W

2
 erf=POD π  

 
where erf is the well-known error function. Equation [5-12] may be rewritten 
slightly to give POD in terms of coverage C as follows. 

[5-13] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
C

2
 erf=POD π  
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5.8.2 Like the standard normal probability density function encountered in Chapter 2, 
evaluation of the error function requires the use of tables. Table A-2 of 
Appendix A contains tabulated values for erf(x). For example, if C is 1.0, then 

 

 ( )0.8862erf=x1.0
2

 erf=POD ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π . 

 
Interpolating between the values for erf(0.88) = 0.7867 and erf(0.89) = 0.7918, 
the value 0.7899 or about 79% is computed. In other words, an inverse cube 
sensor, when used in a parallel sweep search at a coverage of 1.0 will produce 
a POD of 79%. The graph of [5-13] is shown as the centermost curve in Figure 
5-8. This is the same well-known POD curve that has appeared in search and 
rescue manuals for many years. 
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 Figure 5-8  

The simplified search planning method (SSPM) assumes an inverse cube 
sensor will be used in a perfect parallel sweep search relative to the search 
object. Furthermore, the POD versus Coverage curve used with the SSPM is 
based on this assumption. 
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5.8.3 With respect to a graph of the three curves depicted in Figure 5-8, Koopman 

observed, 
 

At one extreme is the case of the definite range law, at the other 
the case of random search. All actual situations can be regarded as 
intermediate curves ... The inverse cube law is close to a middle 
case, a circumstance which indicates its frequent empirical use, 
even in cases where the special assumptions upon which its 
derivation was based are largely rejected. 

 
In these statements, Koopman’s “All actual situations ... ” clearly do not include 
those where systematic errors distort the search pattern relative to the search 
object even though such situations are common in actual operations. For 
example, search patterns designed for motionless search objects are almost 
always employed by search facilities when searching for objects, such as those 
adrift on the ocean, which are known to be moving. Under some circumstances, 
plotting these patterns relative to the moving object shows that the area 
covered is very different from that which should have been covered, with 
disastrous effects on the POS. However, that is another topic beyond the scope 
of this paper. 

 
5.8.4 In summary, the inverse cube model of visual detection has the following 

advantages. 
 

· The inverse cube model is based on a representation of the geometry of the 
operational situation. 

· The POD function for parallel sweep searches using an inverse cube sensor 
can be expressed in terms of an existing and well-known mathematical 
function, namely the error function erf(x). 

· The POD curve falls approximately midway between the “extremes” of the 
POD curve generated by parallel sweep searches with definite range 
sensors, and that of random search. 

 
The disadvantages of the inverse cube model include the following. 

 
· Its validity as a model of visual detection has never been confirmed for any 

situation. 
· Three of the four basic assumptions upon which the model is based are 

clearly not true for SAR situations. 
· Even if the inverse cube model is assumed to be valid, the validity of its 

POD function depends upon a search pattern that has perfectly parallel, 
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equally spaced tracks relative to the search object, a situation that rarely if 
ever exists in practice. 
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5.9 Search Effort, Coverage and POD. The differences among the three curves 
shown in Figure 5-8 may not appear to be particularly large. However, consider 
the following. From equation [5-3], it is easy to see that for any area of size A, 
the search effort Z required to cover it with a coverage of C is proportional to C. 
That is, it takes twice as much effort to get twice the coverage of the same 
area. Now suppose a search planner wants to put enough search effort into an 
area to achieve a POD of 79%. Looking at the graphs in Figure 5-8, it is seen 
that this can be done by a definite range sensor at a coverage of 0.79. To get 
the same result with an inverse cube sensor requires a coverage of 1.0 which is 
nearly 27% greater. This means it will take 27% more effort to get the same 
79% POD with an inverse cube sensor as it did with the definite range sensor. 
With random search, a coverage of 1.56 is required to achieve a 79% POD. 
This is almost twice the coverage (a 97% increase) required for a definite range 
sensor and is 56% more than the coverage required for an inverse cube 
sensor. The differences in the amounts of search effort required to achieve a 
given result are clearly much larger than the differences in the sensors’ POD 
functions. 

  
The amount of search effort required to achieve a certain POD with a parallel 
sweep search is highly dependent upon, and sensitive to, the nature of the 
sensor’s lateral range curve. 

 
For this reason, it is very important to have accurate knowledge about both the 
shape of the sensor’s lateral range curve and its associated sweep width under 
the actual search conditions encountered. 

 
5.10 Effects Leading to Random Search PODs. In this chapter it has been shown 

that the random search POD curve is a good estimator in two quite distinct 
situations. 

 
1) Whenever any sensor follows a random path within the search area, the 

random search POD curve should be used. 
2) Whenever the lateral range function, p(x), has a low maximum value at x = 

0 and maintains a low but nearly constant value over the interval (-x,+x) 
where x is large compared to the sweep width W, the random search POD 
curve should be used. 

 
Of course, this immediately raises the following two questions. 

 
a) Just how “random” does a searcher’s path have to be before POD is 

significantly impacted? 
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b) Just how low and flat does a sensor’s lateral range curve have to be before 
its parallel sweep POD is essentially that of random search? 

 
5.10.1 One approach to answering the first question is to reason as follows. Suppose 

a large number of experiments were done to determine the lateral range 
function where the ranges and bearings of all detections (and misses) from the 
sensor’s intended position on the relative track were accurately recorded but 
the exact positions of the sensor with respect to the search object were not 
known. The resulting lateral range curve would then represent the “average” or 
“expected” lateral range function with respect to the intended relative track and 
would reflect the combined effects of the sensor’s true lateral range function 
and the probable error of position relative to the search object.  

 
5.10.2 The probable error of position relative to the search object includes probable 

errors in both the search facility’s position and the search planner’s estimates of 
the search object’s position. This is important because the quality of the search 
pattern depends on how accurate it is relative to the search object. It is 
reasonable to assume the degree of “randomness” in the relative track is 
represented by the size of the probable error of position relative to the search 
object. The distribution of position errors is generally assumed to be circular 
normal. This means the distribution of errors perpendicular to the relative track 
(i.e. the distribution of cross-track errors) is normal. If it is assumed that the 
search legs are long compared to the sweep width while the spacing between 
them is roughly the same as the sweep width, then the cross-track error is far 
more important than the component along the track. Thus it is reasonable to 
consider only the effects of cross-track error in estimating the “average” or 
“expected” lateral range curve. 

 
5.10.3 If the true (no position error) lateral range function is known or such a function 

has been postulated, and the probable error of position relative to the search 
object can be estimated, it is then possible to estimate the expected lateral 
range function with respect to the intended relative track by computing the 
convolution integral of the true lateral range function and the normal (cross-
track error) function as follows: 

 

[5-14]  ( ) ( ) ( )dtt,xtp=x
+

σϕ Ζ∫
∞

∞

 
where _(x) is the expected probability of detection at a lateral range of x from 
the intended relative track, p(x-t) is the probability of detection at the true lateral 
range x-t from the sensor, and Z(t,σ) is a normal distribution of cross-track 
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errors t having a standard deviation of σ. The general form of a normal 
distribution Ζ with a mean (average) of zero and a standard deviation of σ is 

 

[5-15] ( )
πσ

σ σ

2
e=t,

2

2

2
t

Ζ . 

 
5.10.4 Several properties of the convolution integral in [5-14] should be noted. First, 

the sweep width of the expected lateral range function is identical to the sweep 
width of the true lateral range function. That is, 

 

[5-16] . ( ) ( ) W=dxxp=dxx
++

∫∫
∞

∞

∞

∞

ϕ

 
Second, as the value of σ increases, the expected lateral range function 
becomes less “peaked” and more spread out as compared to the actual lateral 
range function. The effect is something like pressing down on the center of a 
semi-rigid closed container full of water whose original cross-sectional shape is 
like that of the true lateral range curve. As the pressure (σ) increases, the 
center becomes lower while the extremities (“tails”) become higher to 
accommodate the displaced volume of water. 

  
As a practical matter, by the time the value of σ is as large or larger than the 
sweep width W, the random search POD curve should be in use. 

 
5.10.6 So far, only the first question about the impact of “randomness” in the relative 

search track has been directly addressed. The second question about just how 
“flat” a lateral range curve must get before the random search curve is 
effectively reached has been indirectly addressed because accounting for the 
uncertainty about the relative search track has the effect of “flattening” the 
expected lateral range curve. Unfortunately, there is no measure of “flatness” 
readily available. The only alternative is to evaluate each lateral range function 
in a parallel sweep search scenario and compare the resulting POD curve with 
that of random search.  

 
5.11 Search Conditions. Recent experiments done by the U. S. Coast Guard 

Research and Development Center indicate that deteriorating search 
conditions, such as decreasing visibility, increasing sea states, increasing 
searcher fatigue, etc. appear to have two effects. First, the sweep width 
becomes smaller as conditions deteriorate; an effect that has been known for 
many years. Second, the lateral range function tends to become more “flat” 
(less “peaked”), an effect that, though apparent, still has not been fully analyzed 
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and incorporated into operational search planning methods. Figure 5-9 depicts 
the effects on an inverse cube lateral range curve of both sweep width 
reduction and “flattening” due to deteriorating conditions and navigational error. 
The only known attempt to date to modify operational search planning to 
accommodate this second effect is a recent development that provides both the 
inverse cube and random search POD curves with somewhat vague 
instructions to use the former when search conditions are “ideal” and the latter 
when search conditions are “poor.” (Actually, a little more guidance is provided 
by suggesting a comparison between “uncorrected” sweep widths (ideal 
conditions) and “corrected” sweep widths (less than ideal conditions) based on 
the size of the difference between the two.) However, as more research and 
analysis is done, it may be appropriate to provide more than just these two 
POD curves to choose from. Recalling from paragraph 5.9 above that the 
required level of search effort to attain a given POD is very sensitive to small 
changes in the POD curve, the use of intermediate POD curves deserves 
consideration. However, another point of view is put forth in the next paragraph.  
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 Figure 5-9 
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5.12 Navigation. While methods of navigation have improved dramatically in recent 
years with the advent of such systems as the Global Positioning System (GPS), 
the ability of search facilities to navigate with extreme precision is by no means 
universal. Besides, the probable position error of the search facility as 
compared to its intended location is only one factor in computing the probable 
position error with respect to the search object, the other factor being the 
uncertainty in the search object’s position and movements. The probable 
relative position errors often encountered tend to be large in comparison to the 
sweep widths for typical SAR search objects, especially when the search facility 
is an aircraft. In addition, there are many other factors affecting how searchers 
and sensors perform under actual operational conditions as compared to “ideal” 
conditions. Uncertainty about the values of these factors have a similar impact 
on the “expected” lateral range curve, mathematically at least, to that just seen 
for uncertainty in the relative search track. This is because the use of 
convolution integrals is not limited to positional uncertainties. A case may still 
be made for the random search POD curve being the most realistic 
representation of the POD values which should be expected under operational 
conditions. 
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 Chapter 6 
 Optimal Search Plans 
 
 
6.1 Introduction. Chapter 2 introduced the concept that the goal of search planning 

is to maximize the probability of success (POS) which in turn depends on 
probability of containment (POC) and probability of detection (POD). Chapter 3 
then explored several different search object location probability density 
distributions and described how to compute POC values for subareas within 
them. Chapter 4 introduced the concepts of lateral range curves and sweep 
width and used these concepts to describe several detection models. Chapter 5 
went on to introduce the concepts of search effort and coverage and then 
examined how the various models described in Chapter 4 perform when used 
in parallel sweep searches by developing their parallel sweep POD curves as 
functions of coverage. Now that methods for computing actual POC, search 
effort, coverage, and POD values have been developed, it is time to bring all of 
these concepts together to formulate a theory of optimal search. As first 
mentioned in Chapter 2, an optimal search is one in which the highest possible 
POS is achieved with the available search effort. This chapter will first examine 
how to optimally allocate search effort over a uniform distribution of possible 
search object locations since that is the simplest possible optimization problem. 
Next, the problem of optimizing search effort allocation over a simple two-part 
non-uniform distribution will be studied. The optimal allocation of search effort 
over a circular normal distribution will be examined in some detail since that is 
the distribution of possible search object locations on which the simplified 
search planning method (SSPM) is based. Finally, the additive principle of 
optimal search is presented followed by a brief discussion of other factors 
besides POC and POD which may warrant inclusion in the computation of 
POS. 

 
6.2 Uniform Search Object Location Probability Density Distributions. In a uniform 

distribution of possible search object locations within some finite area A, the 
POC for the entire area A is 1.0 (100%). The POC value for any subarea ai in A 
is simply ai/A. Suppose the amount of available search effort Z is equal to A/2. 
With this amount of effort, it is possible to search the entire area A with a 
coverage of 0.5. It is also possible to search one-half of A with a coverage of 
1.0, one-third of A with a coverage of 1.5, etc. There are infinitely many 
possibilities, assuming both the search effort and search object location 
probability distribution are infinitely divisible (a luxury not available to search 
planners in the real world but nevertheless quite useful to theorists). The 
question optimal search theory tries to answer is, “Which combination of area 
and coverage will produce the highest POS?”. The simplest way to start looking 
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for an answer to this question is to perform a few trials. However, before 
answering this question, a few more assumptions will be made and maintained 
for the remainder of the chapter. It will be assumed that all searches employ 
equally spaced parallel sweeps relative to the search object. It will be further 
assumed that only one contiguous area is searched and that the search effort is 
uniformly distributed throughout that area, i.e. the same coverage will be used 
in all parts of the area. This last assumption is not entirely consistent with the 
first assumption of parallel sweeps due to the shapes and the overlapping of 
lateral range curves described in the last chapter. However, at the coverages 
being evaluated in the trials to follow, this assumption is a reasonable 
approximation of the true situation. 

 
6.2.1 Definite Range. If a definite range sensor is used, then searching the entire 

area A with a coverage of 0.5 will produce the following results. The POC will 
be 1.0 since all of A is included. From Figure 5-8 it is seen that the POD for a 
definite range sensor at a coverage of 0.5 is also 0.5. This makes the POS for 
this trial 

 
  0.5=1.0x0.5=POCxPOD=POS
 

or 50%. For the second trial, assume one-half of A is searched with a coverage 
of 1.0. This makes the POC 0.5 and the POD 1.0. Computing the POS, 

 
  0.5=0.5x1.0=POCxPOD=POS
 

which is again 50%. For the third trial, assume one-third of A is searched with a 
coverage of 1.5. This makes the POC 0.33 but the POD remains at 1.0 as it 
does for this sensor for all coverages greater than or equal to 1.0. This time, 
the POS is 

 
  0.33=0.33x1.0=POCxPOD=POS
 

or about 33%. For this sensor and probability distribution, the same amount of 
effort will produce the same POS as long as the coverage is less than or equal 
to 1.0. So, for search areas within the range of A down to A/2, any decrease in 
search area is exactly matched by the increase in POD that comes with the 
increase in coverage. For areas less than A/2, coverages become more than 
1.0 but since the POC continues to decrease while there is no further increase 
in POD, such high coverages actually reduce the search’s chances of success. 

 
6.2.2 Inverse Cube. If the sensor is changed from a definite range type to an inverse 

cube type while keeping all other things equal, then the POC values and 
coverages will remain the same as in subparagraph 6.2.1 above. However, the 
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change of sensor will be reflected in a change in the POD values at the various 
coverages. Repeating the first trial, the POC remains 1.0 but the POD from the 
inverse cube curve in Figure 5-8 is now only 0.47. Computing the POS with 
these values, 

 
  0.47=1.0x0.47=POCxPOD=POS
 

or about 47%. For the second trial, the POC is 0.5 and the coverage is 1.0. 
From Figure 5-8, the inverse cube POD for this coverage is 0.79. The POS for 
this trial is 

 
  0.395=0.5x0.79=POCxPOD=POS
 

or about 39.5%. Note that this is substantially less than the POS of the previous 
trial. For the third trial, the POC is 0.33 while the coverage is 1.5. Again 
consulting Figure 5-8, the POD for an inverse cube sensor at this coverage is 
found to be about 0.94. Computing the POS, 

 
  0.313=0.33x0.94=POCxPOD=POS
 

or about 31.3% which is even smaller than the previous trial. It is clear from 
these trials that when an inverse cube sensor is used to search a uniform 
distribution of possible search object locations, the amount of area searched 
with the available search effort should be maximized at the expense of 
coverage in order to achieve the highest possible probability of success. It is 
easy to see why this is true by comparing the inverse cube POD curve to the 
definite range POD curve. For coverages less than or equal to 0.5, doubling the 
coverage doubles the definite range POD. Since the slope of the inverse cube 
POD curve gradually decreases from 1.0 at the origin to 0 as the coverage 
increases without bound, increases in the coverage produce smaller and 
smaller increases in POD as the coverage becomes greater and greater. So, 
for uniform distributions, decreasing the search area decreases POC faster 
than the increase in coverage can increase an inverse cube sensor’s parallel 
sweep POD. The net result is a loss in POS. 

 
6.2.3 Random Search. Repeating the above trials using the random search curve to 

obtain POD values produces results similar to the inverse cube results, only 
lower. The POD for the first trial is about 39%, for the second about 63% and 
for the third about 78%. The corresponding POS values are about 39% for the 
first trial, 31.5% for the second trial and about 26% for the third trial. Again, the 
conclusion is that for a uniform search object location probability density 
distribution, the amount of area searched should be maximized at the expense 
of the coverage. 
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6.3 A Simple Non-Uniform Distribution. Consider a square area measuring 5 units 

on a side which has a POC for a given search object of 1.0 (100%). If the 
possible search object locations were uniformly distributed, the probability 
density (ρ) everywhere in A would be the same as the average value 

 
 

 0.04=
25
1.0=

A
POC=ρ  

 
or 4% per square unit of area. Consider a second square, concentric to the 
first, which measures 3 units on a side. The original 5 x 5 square is now divided 
into two regions — the region contained inside the smaller square, and the 
region which is outside the smaller square but inside the larger one. Figure 6-1 
depicts this situation. Now suppose the POC for the inner (smaller) square is 
0.5 (50%) and is uniformly distributed within that square. This leaves the 
remaining 50% of the search object’s possible locations in the region between 
the inner and outer squares. Suppose that within this region, the possible 
search object locations are uniformly distributed. The area (a1) of the small 
square is 3 x 3 = 9 square units which makes the search object location 
probability density ρ1 = 0.5/9 = 0.0556 or about 5.56% per square unit. The 
area of the other region is 25 - 9 = 16 square units making the probability 
density ρ2 = 0.5/16 = 0.03125 or about 3.125% per square unit. Given these 
values, it is instructive to begin with trial searches similar to those done in the 
previous paragraph and then try some other variations to see how it might be 
possible to determine the optimal area to search. Again it will be assumed that 
the available search effort is equal to one half of the possibility area. In this 
case, that would be 25/2 or 12.5 square units. It will be assumed that all trial 
search areas are squares which are concentric with the possibility area. 
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 Figure 6-1       Figure 6-2 
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6.3.1 Definite Range. Just as in the first trial of subparagraph 6.2.1, searching all of A 
at a coverage of 0.5 will produce a POS of 0.5 (50%). In the next trial, one-half 
of A was searched at a coverage of 1.0. The length of one side of a square with 
one-half the area of the possibility area is computed as 

 

 3.54
2

25=
2

5=
2
25=

2
25

≈  

 
which is slightly larger than the 3 x 3 central square. Thus the POC for the 
search area is the POC for the central square (POC1 = 0.5) plus some 
additional probability from the other region. To find out just how much additional 
probability, the amount of area outside the central square but inside the search 
area (the shaded region in Figure 6-2) needs to be computed. Since the area of 
the search area is 12.5 square units and the area of the inner square is 9 
square units, the area we are seeking is 12.5 - 9 = 3.5 square units. The 
probability density in this region was previously computed to be 0.03125 so the 
amount of additional probability is 

 
 0.1094=50.03125x3.=ax=POC 222 ρ  
 

This makes the total POC for the search area 0.5 + 0.1094 = 0.6094 or about 
61%. Computing the POS for this search, 

 
  0.6094=0.6094x1.0=POCxPOD=POS
 

or about 61%. In this case, decreasing the area searched and increasing the 
coverage significantly improved the POS over the previous trial, a result quite 
different from when the same two trials were performed with a completely 
uniform distribution of possible search object locations. To perform the third trial 
where only one-third of the possibility area is covered with a coverage of 1.5, it 
is necessary to compute the dimensions of the third search area as follows: 

 

 2.89
3

35=
3

5=
3
25=

3
25

≈ . 

 
This value is smaller than the dimensions of the inner square (3 x 3) so this 
third trial search area will be contained entirely within it. The area of the third 
trial search area is 25/3 or about 8.33 square units. The POC for this area is 

 
 0.4630=330.05556x8.=ax=POC 31ρ  
 



The Theory of Search Chapter 6  
 

  
 6−7 

Computing the POS, 
 
 , 0.4630=0.4630x1.0=POCxPOD=POS
 

or about 46% which is less than either of the previous trials. The fact that over 
the course of these trials, which progressed from larger areas and lower 
coverages to smaller areas and higher coverages, the POS went from a lower 
value to a higher value and then back down to a lower value again suggests 
that there exists somewhere between the two search areas and coverages that 
gave the lower POS values, there is an optimum search area and coverage 
which produces the highest possible POS for the given amount of search effort. 
Clearly the optimal area cannot be smaller than 12.5 square units since 
increasing the coverage for a definite range sensor above 1.0 reduces POC 
without increasing POD and hence reduces POS. As it turns out, increasing the 
search area and reducing the coverage to a value below 1.0 also decreases the 
POS as any trial using this two-part distribution will show. Hence, the optimal 
coverage to use with a definite range sensor in this case is 1.0, assuming the 
search effort is properly placed so that the areas with the highest probability 
density are covered. 

 
6.3.2 Inverse Cube. Performing the same trials as in 6.3.1 above with an inverse 

cube sensor produces the following results. 
 

• Trial 1: POS = POC × POD = 1.00 × 0.47 = 0.47 or 47% 
• Trial 2: POS = POC × POD = 0.61 × 0.79 = 0.48 or 48% 
• Trial 3: POS = POC × POD = 0.46 × 0.94 = 0.43 or 43% 

 
In this case also, searching with a coverage of 1.0 produces the optimal result. 

 
6.3.3 Random Search. Performing the same trials as in 6.3.1 above using random 

search produces the following results. 
 

• Trial 1: POS = POC × POD = 1.00 × 0.39 = 0.39 or 39% 
• Trial 2: POS = POC × POD = 0.61 × 0.63 = 0.38 or 38% 
• Trial 3: POS = POC × POD = 0.46 × 0.78 = 0.36 or 36% 

 
For random search, maximizing the area at the expense of coverage is still the 
best policy, but not dramatically so. 

 
6.4 Optimal Search Factors. The trials performed in paragraphs 6.2 and 6.3 above 

show that the optimal search area and coverage depends on both the nature of 
the distribution of possible search object locations and on the nature of the 
sensor employed. If both are known or assumed, it is then possible to develop 
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optimal search factors based on the size of the available search effort relative 
to the “size” of the search object’s location probability density distribution. For 
point datums, the total probable error of position will be used to measure the 
“size” of the search object location probability distribution. The optimal search 
factor will then be the value which, when multiplied by the total probable error of 
position, produces the optimal search radius. Circumscribing a square about a 
circle of this radius centered on the datum point will produce the optimal search 
area. Optimal search factors will be explored in the next paragraph where the 
search object location probability distribution is assumed to be of the circular 
normal type commonly used with point datums and the sensor is assumed to 
be represented by the inverse cube parallel sweep POD curve. All of these are 
assumptions on which the SSPM is based. 

 
6.5 The Circular Normal Distribution. The circular normal distribution was described 

in Chapter 3. With this distribution, it is not possible to define the boundary of 
the possibility area. This is because the probability density never (in theory) 
actually becomes zero, even though it becomes vanishingly small as the 
distance from the distribution’s center becomes very large. However, it is 
possible to define the boundary of the smallest area which contains 50% of the 
distribution. As shown in Chapter 3, this boundary is a circle with a radius of 
about 1.1774 standard deviations (1.1774σ). This is also, by definition, the 
value of E, the total probable error of position. If E is taken to be the basic unit 
of measure, then a square measuring 2E on a side and centered on the 
distribution will have a POC of 0.5791 or about 58%. This is the circumscribed 
square described in subparagraph 3.3.4 of Chapter 3. The area of this square 
is 4E2 and so, for convenience, it will be assumed in the trials that follow that 
the available effort is also 4E2. 

 
6.5.1 Inverse Cube. The coverages used in the previous trials were 0.5, 1.0 and 1.5. 

To find the amount of area which can be searched at a given coverage with a 
given effort, it is necessary to solve equation [5-3] for A as follows. 

 

[6-1] 
C
Z=A  

 
Using this formula, it is seen that with 4E2 units of effort, an area of 8E2 square 
units can be searched at a coverage of 0.5. A square of this area measures 
about 2.828E units on a side. The radius of a circle inscribed within this square 
is half this value or 1.414E. Recalling that E = 1.1774σ, this radius is equivalent 
to 1.665 standard deviations. From the standard normal tables in Appendix A, 
the joint probability that both coordinates of the search object’s location relative 
to the center lie between plus and minus 1.665 standard deviations is 
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 ( )[ ] 0.8172=0.95200.52 2  
 

or about 82%. Using this POC value and the inverse cube’s parallel sweep 
POD of about 0.47 (47%) for a coverage of 0.5, the POS is computed as 

 
  0.3841=0.82x0.47=POCxPOD=POS
 

or about 38%. For the next trial, the search area is equal to the effort (4E2) so 
the square area searched will measure 2E on a side and the radius of the 
inscribed circle will be E. The POC for this square has already been computed 
as 0.5791 or about 58%. The inverse cube parallel sweep POD for a coverage 
of 1.0 is about 79%. Using these values to compute POS, 

 
  0.4575=0.58x0.79=POCxPOD=POS
 

or about 46%. Finally, the area which can be covered at a coverage of 1.5 is 
computed from [6-1] as 2.6667E2. A square with this area measures 1.633E on 
a side with an inscribed circle having a radius of 0.8165E. This is equivalent to 
0.9613 standard deviations. The POC for this square, as computed using the 
standard normal tables, is 

 
 ( )[ ] 0.4405=0.83180.52 2  
 

or about 44%. The parallel sweep POD for an inverse cube sensor at a 
coverage of 1.5 is about 94%. Computing the POS, 

 
  0.4140=0.44x0.94=POCxPOD=POS
 

or about 41%. Again, out of the three trials, a coverage of 1.0 gives the highest 
POS. However, it is not certain whether this is the highest possible POS which 
can be obtained with 4E2 units of effort. 

 
6.5.2 Optimal Inverse Cube Search Area. Unfortunately, there is no way to directly 

compute the size of the optimal search square. That is why the method of 
successive trials has been used up to now even though the computations were 
rather cumbersome and tedious. Fortunately, for problems where repetitive 
trials are preformed using incremental changes in the input parameters to 
search for a maximum result, we have computers. A computer program was 
written which expands the search square by increments until the computed 
POS begins to decline. The program then goes back to the square computed 
two steps earlier, cuts the increment in half, and repeats the process. This 
procedure is repeated until the increments become very small. Using this 
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program to find the optimum search square for 4E2 units of search effort 
produces the following results. A square measuring 2.04E on a side (optimal 
search factor = 1.02) should be searched, making the POC 0.5940, the 
coverage 0.96, the POD 0.7707, and the POS 0.4578. Again, the optimal 
coverage is very close to 1.0. It is little wonder that the developers of the SSPM 
seemed to consider this level of coverage ideal. 

 
6.5.3 Optimizing Other Levels of Available Effort. In all the trials so far, the amount of 

available effort was always enough to cover 50-60% of the distribution at a 
coverage of 1.0 and in most cases using that coverage produced an optimal or 
nearly optimal result. However, the availability of search effort depends on the 
availability of search facilities while the size of the (practical) possibility area 
depends on the amount of uncertainty (total probable error of position) about 
the search object’s location. These two quantities, available effort and 
possibility area, are largely independent so there is no guarantee that a search 
planner will have, or can get, just the amount of effort required to cover 50-60% 
of the possible locations with a coverage of 1.0. Consider a circular normal 
distribution where the available effort is only 2E2. At this level of effort, the 
computer program produces an optimal search factor of 0.81 and thus 
recommends a square measuring 1.62E on a side be searched. This makes the 
POC 0.4356, the coverage 0.76, the POD 0.66, and the POS 0.2875. Using the 
same amount of search effort to search a smaller square 1.1414E on a side at 
a coverage of 1.0 produces a POS of only 0.2140. Next, consider the situation 
if 8E2 units of effort are available. This time, the computer program computes 
an optimal search factor of 1.29, recommending a square 2.58E units on a side 
be searched. This makes the POC 0.7571, the coverage 1.21, the POD 0.8701, 
and the POS 0.6588. Searching a larger square 2.828E units on a side at a 
coverage of 1.0 produces a POS of only 0.5610. It is clear from these last two 
examples that using the available effort at a coverage of 1.0 does not always 
produce optimal results. 

 
6.6 The Additive Principle of Optimal Search. Up to now, all discussions of optimal 

search have considered only single search efforts. Operationally, it is often 
necessary to perform several searches before the search object is located. A 
question of both theoretical and practical interest is whether there would be any 
advantage to applying the total search effort consumed over several searches 
to a single, massive search. One of the more important theorems of search 
theory provides the answer. 

  
Given an amount of search effort Z, the maximum cumulative probability of 
success may be attained by either a single optimal search using all of Z or by 
smaller, individually optimized searches using efforts zi, where Z=Σzi, provided 
each of the searches is optimized with respect to an updated version of the 
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search object location probability density distribution which accounts for the 
effects of all previous searching. 

 
6.6.1 This theorem opens the door for developing a single set of optimal search 

factors, based on cumulative search effort, which may be used to compute the 
optimal search square for either a single search or each of several searches in 
a series. The computer program cited in paragraph 6.5.2 was used to compute 
and graph optimal search factors for both the inverse cube and random search 
functions over a circular normal distribution of possible search object locations. 
Figures 6-3 and 6-4 show these optimal search factor curves, where relative 
effort is defined as the actual available search effort in square nautical miles 
divided by the square of the total probable error (the effort factor) and the 
cumulative relative effort is the sum of all the individual relative effort values 
over all searches, including the one which is being planned. 

 
6.6.2 It is also possible to develop cumulative POS curves based on the cumulative 

relative effort expended to date and the assumption that all searching over the 
circular normal distribution has been optimal. Figure 6-5 shows the cumulative 
POS curves for optimal searches around point datums for both the inverse 
cube model and random search. 

 



The Theory of Search Chapter 6  
 

  
 6−12 

 

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Optimal Search Factor

C
um

ul
at

iv
e 

R
el

at
iv

e 
Ef

fo
rt

Poor Search Conditions

Ideal Search 
Conditions

Poor Search Conditions

Ideal Search Conditions

Optimal Search Factors for Point Datums

 
 Figure 6-3 
 



The Theory of Search Chapter 6  
 

  
 6−13 

 

Optimal Search Factors
for Point Datums

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5

Optimal Search Factor

C
um

ul
at

iv
e 

R
el

at
iv

e 
Ef

fo
rt

3

Poor Search Conditions

Ideal Search Conditions

 
 Figure 6-4 
 
 



The Theory of Search Chapter 6  
 

  
 6−14 

 

Cumulative Probability of Success for Optimal Searches Along Line Datums

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Cumulative Relative Effort

C
um

ul
at

iv
e 

PO
S

Ideal Search Conditions

Poor Search Conditions

 
 Figure 6-5 
 
6.6.3 There is a small inconsistency between the theory and practice of optimal search 

planning. The theorem stated in paragraph 6.6 requires optimal allocation of effort on 
all searches. To be truly optimal, the coverage of a non-uniform distribution of possible 
search object locations should vary with the probability density. That is, high coverages 
should be used in subareas where the probability density is high and low coverages 
should be used in areas where the probability density is low and relatively uniform. 
This is impractical in real-world operations. The probability density of a circular 
normal distribution varies continuously as distance from the center increases. It is not 
operationally possible to vary the coverage continuously to match the probability 
density. However, if it could be done, then as the cumulative relative effort 
increased, whether for one or many searches in a series, the optimal search 
radius would also increase, regardless of whether the available effort was 
greater or less than the effort used in the previous search. 

 
6.6.4 To see why the optimal search radius always increases with truly optimal 

searching, consider the following. Starting with a small area centered on the 
“peak” of a circular normal distribution, the optimal coverage would be that 
which reduces the density in this small central area to the density of the small 
areas immediately surrounding it, forming a small plateau. The next optimal 
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search would reduce the density in this small plateau to that of the immediately 
surrounding area, thus enlarging, and lowering, the plateau of equal density. 
This technique, if repeated until the available search effort is expended, would 
produce the highest possible POS by reducing the plateau of equal density to 
the lowest possible level. Under these circumstances, there would never be a 
situation where a subarea of an area that had been searched had a higher 
density than some other part of the searched area. That is, the density within 
the area searched to date would always be uniform. On the other hand, using a 
uniform coverage over a large part of a circular normal distribution will leave a 
“cliff” around the edges of the searched area where the density inside has been 
reduced to a level lower than that immediately outside the searched area. Also, 
the density within the searched area will not be uniform. It will be a reduced 
version of the original distribution, including a central “peak” of the highest 
density remaining in the searched area. 

 
6.6.5 Using the optimal search factor curves in Figures 6-3 and 6-4 which are based 

on uniform coverages of large areas also produces monotonically increasing 
optimal search radii. However, if, in a series of large-area optimal searches 
using uniform coverage, the available relative effort for the next search is much, 
much less than its predecessors, searching the recommended still larger area 
will not be optimal. Instead, the optimal area to search with such a small effort 
will be the remaining central “peak” where the highest probability density lies. 
Fortunately, this situation is rare in actual search operations. Figure 6-6 is a 
scatter plot of optimal search factors for each search in a series of 5 searches 
where the effort relative effort of any one search was picked at random from a 
uniform distribution between 0.1 and 50.0. Two hundred fifty groups of 5 
sequential searches each were examined and the vast majority of optimal 
search factors clustered around the optimal search factor curve. However, a 
few did fall well off the curve and they represent those situations where the 
reduction in the available effort for the next search was severe enough to cause 
a significant departure from the computed optimal search factor curve. 
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6.7 Other Optimization Criteria. This paper is based on the premise that the goal of search 
planning is to maximize POS and the assumption that POS depends solely on POC and 
POD. Although a conscious attempt was made to explicitly state all of the pertinent 
assumptions, some tacit assumptions remain. Chief among these are the following. 

 
· The search object’s location probability density distribution will remain a cohesive 

whole indefinitely and will neither expand too fast nor be torn asunder into multiple 
pieces. 

 
· The survivors will stay alive until found, regardless of how long it takes. 

 
6.7.1 If the first of these assumptions is not true, then neither is the additive principle of 

optimal search, at least not in practice. Consider the following example. There is a good 
deal of pleasure boat and aircraft traffic across the Straits of Florida between the U. S. 
mainland and the Bahama Islands. SAR cases in this area are common. However, if a 
boat or raft goes adrift between, say, Miami and Bimini, it will remain in the strait for 
only a couple of days before the Florida Current becomes the Gulf Stream at the strait’s 
northern end. It is imperative that survivors be located and rescued before reaching the 
open Atlantic Ocean. At the north end of the strait, the strong Florida Current/Gulf 
Stream fans out, spins off eddies which can take on a life of their own for days or 
weeks, starts to meander, and generally makes predicting the movement of drifting 
objects very difficult. In any realistic simulation, the search object’s probability 
distribution would be ripped apart with some of it moving rapidly northeast with the 
core of the Gulf Stream, some of it becoming involved with southerly counter-currents, 
possibly some of it becoming tied up in a warm-core or cold-core eddy drifting slowly 
away from the main current, etc. An optimization algorithm which “knew” ahead of 
time about how much search effort would be available each day and could “look ahead” 
and see the dispersion problem starting on the second or third day would concentrate 
the search effort in such as way as to minimize the probability of the search object 
escaping from the strait undetected, even if it meant sacrificing POS on individual 
searches early in the search effort in order to maximize the cumulative POS. Such an 
algorithm is impossible to implement without the use of computers. However, the 
Computer Assisted Search Planning system, version 2 (CASP 2.0) does have an 
algorithm capable of optimally allocating search effort over multiple searches based on 
predicted changes in the distribution of the search object’s possible locations. 

 
6.7.2 Often the ability of survivors to stay alive decreases rapidly with time. In this case, the 

appropriate optimization criteria might be minimizing the time to detect rather than 
maximizing POS over some longer period of time. Again, this requires a complex 
algorithm and a computer to implement. This capability is a planned enhancement for 
CASP 2.0 if it has not already been implemented. 
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 Chapter 7 
 Conclusion 
 
7.1 Introduction. The improved search planning method contains a “new” search 

planning methodology based on the concepts, theories, formulas and graphs 
developed in the preceding chapters, including the optimal search factor just 
described in Chapter 6. This methodology was developed to overcome several 
limitations of the previously published method. It is simply a more complete 
adaptation of basic search theory, as developed in the previous chapters of this 
paper, for practical use. In the paragraphs that follow, the merits of the older 
method with its fixed “safety factors” will be compared with the use of optimal 
search factors. 

 
7.2 Limitations. The simplified search planning method (SSPM) has several serious 

limitations. 
 

· It works correctly only for: 
 

→ a point datum, where the search object location probability density 
distribution is assumed to be circular normal; and 
 

→ a specific mathematical model of visual detection, called an “inverse 
cube law sensor,” of known sweep width following equally spaced 
parallel tracks under ideal search conditions. 

 
· It used a fixed set of “safety factors” to determine the size of the 

“recommended” search area without regard to how much search effort was 
available to cover that area. 

 
· It provided no guidance on how much search effort, or what coverage 

factor, should be used in the “recommended” search area. 
 

· It provided no procedure for determining how to balance the conflicting 
goals of: 
→ maximizing the size of the area searched; and  
→ maximizing coverage of the area searched. 

 
· It provided no measure of search effectiveness. 

 
These limitations stem from the historical context in which search theory was 
first developed and then applied to practical situations. 
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7.3 Historical Note. As previously stated, modern search theory was developed in 
the 1940s during wartime, primarily for naval use. It was first applied to locating 
enemy naval forces in vast expanses of ocean, as well as to preventing the 
enemy from penetrating too closely to friendly forces undetected.  

 
7.3.1 Not surprisingly, the first application of this new theory to search and rescue 

involved aviators forced down over the ocean. By the war’s end, naval forces 
had become quite adept at locating and rescuing downed aviators; however, 
this specific SAR problem was relatively simple for the following reasons: 

 
· The actual or planned movements of the aircraft involved were well known 

to those who would be responsible for any SAR efforts. 
 

· Radio contact was usually maintained up until the pilot either bailed out or 
ditched. As a result, the time and place where the downed pilot went into the 
ocean were usually known within reasonably close limits, making a point 
datum an appropriate choice. 

 
· The time between becoming distressed and the arrival of search units at the 

scene was relatively short, often only a matter of hours. 
 

· Drift forces acting on floating objects in the open ocean were often 
approximately constant, and moderate, over the times and areas involved. 

 
· There were usually substantial amounts of search effort available that were 

willingly employed to locate downed aviators. 
 
7.3.2 This was fortunate, for the need to act quickly in wartime in isolated areas far 

from shoreside support and the lack of available computing power at that time 
meant the solution to the search planning problem had to be simple. Planning a 
search could involve only the barest minimum of manual computations. The 
complex body of search theory had to be reduced to a small and greatly 
oversimplified set of approximations for practical use in the field, resulting in the 
development of the SSPM. For its time and the problem it was intended to 
solve, the SSPM was superb. 

 
7.4 Current SAR Environment. In contrast, today’s civilian environment requires 

search planners to deal with many situations that are very different from 
locating downed pilots whose locations are relatively well known. In addition, 
today’s small, inexpensive hand-held calculator has more computing power 
than that possessed by entire fleets 50 years ago. Since the 1940s, the basic 
search planning method for locating downed military aviators in wartime has 
been repeatedly extended to cope with situations encountered in modern 
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civilian search and rescue efforts. However, until now, these extensions did not 
revisit the basic theory of search and try to apply it to today’s search problems. 
Instead, previous efforts attempted to extend the solution for one very specific, 
limited, problem and make it work for other, much different problems. Often this 
was like trying to force a square peg into a round hole. 

 
7.5 Comparing the SSPM and ISPM. This chapter will revisit the problem of 

optimally allocating search effort and will compare the previous method with the 
improved search planning method (ISPM) which uses the optimal search 
factors described in Chapter 6. In summary, the ISPM: 

 
· Replaces the five fixed “safety factors” with continuous curves representing 

“optimal search factors” as functions of “cumulative relative search effort;” 
 

· Works for point datums, line datums and area datums as well as ideal or 
poor search conditions. The assumption of a sensor modeled on the 
“inverse cube law” of visual detection with a known sweep width moving 
along equally spaced parallel tracks has been retained for ideal search 
conditions. For poor search conditions, it can be shown that the “poor 
search conditions” curves work for any sensor as long as the sweep width is 
known; 

 
· Provides specific, quantitative guidance on how and where the available 

search effort should be employed so as to maximize search effectiveness, 
i.e., it answers the question of how to balance the amount of area searched 
against the level of coverage achieved in the searched area; and 

 
· Provides measures of effectiveness, probability of success (POS) and 

cumulative POS, for evaluating the results of individual searches and series 
of searches. 

 
7.5.1 Since both the SSPM and ISPM are based on the same theory, there should be 

some point of agreement between the two; that is, for some level of search 
effort, the two methods should recommend the same search area. 
Unfortunately, the SSPM does not use search effort to compute the 
recommended area, making it likely that the designers of this method made 
some assumptions about its value in order to make the method simpler. Most 
practicing search planners assume the recommended search area should be 
covered with a coverage factor of 1.0. Making this assumption allows a relative 
effort to be computed for the SSPM and provides an opportunity for comparing 
it to the ISPM. 
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7.5.2 The level of effort (Z) required to search an area with a coverage factor of 1.0 is 
exactly equal to the size of the area in square nautical miles. For example, the 
SSPM recommends the first search area be a square centered on datum which 
is just large enough to encompass a circle whose radius is 1.1 times the total 
probable error of position, E. The effort required to search such a square with a 
coverage factor of 1.0 is found by the formula: 

 
Z = Area = (2.0 x 1.1 x E)2 = (2.2 x E)2 = 4.84 x E2

 
To use the ISPM, it is necessary to compute the cumulative relative effort. 
Relative effort for a point datum is computed by the formula: 

 

 
E
Z = 

f
Z = Z 2

Zp
r  

 
Thus the relative effort (and cumulative relative effort) for the first search based 
on the SSPM’s “safety factor” is: 

 

 4.84 = 
E

E x 4.84 = Z 2

2

r  

 
The effort required to cover the SSPM’s recommended second search area 
with a coverage factor of 1.0 is: 

 
 Z = (2.0 x 1.6 x E)2 = 10.24 x E2

 
This means the relative effort is 10.24 making the cumulative relative effort for 
the first two searches: 

 
 Zrc = Zr-1 + Zr-2 = 4.84 + 10.24 = 15.08 
 
7.5.3 The relative effort and cumulative relative effort values for all five of the SSPM 

“safety factors” are listed in Table 7-1 below, assuming a coverage factor of 1.0 
is used for the area defined by each “safety factor.” The ISPM optimal search 
factors and other data of interest are also listed. (The optimal search factors 
were computed for Table 7-1 but may be found using Figures 6-3 and 6-4 of 
Chapter 6.) Note the very close agreement between the SSPM Safety Factor 
and the ISPM Optimal Search Factor (the second and fifth columns, 
respectively) for each of the first three searches. 
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Search 
Number 

 
SSPM 
Safety 
Factor 

 
Relative 

Effort 

 
Cumulative 

Relative 
Effort 

 
ISPM 

Optimal 
Search 
Factor 

 
ISPM 

Cumulative 
Probability 
of Success 

 
ISPM Optimal 

Coverage 
Factor 

 
1 

 
1.1 

 
4.84 

 
4.84 

 
1.09 

 
51.17% 

 
1.02  

2 
 

1.6 
 

10.24 
 

15.08 
 

1.59 
 

82.70% 
 

1.01  
3 

 
2.0 

 
16.00 

 
31.08 

 
2.02 

 
94.91% 

 
0.98  

4 
 

2.3 
 

21.16 
 

52.24 
 

2.40 
 

98.61% 
 

0.92  
5 

 
2.5 

 
25.00 

 
77.24 

 
2.74 

 
99.62% 

 
0.83 

Table 7-1 
 

From the values in this table, it appears that the SSPM was designed to 
produce the optimal search area for a coverage factor of 1.0, at least for the 
first three searches. However, as a practical matter, this approach to search 
planning has some serious drawbacks. 

 
7.5.4 There are basically two ways to create an optimal search plan. The first is to 

choose the desired probability of success (POS), find the minimum amount of 
search effort required to attain that POS and the area in which it should be 
applied, and then obtain the required amount of search effort. The second way 
to create an optimal search plan is to determine the amount of search effort 
readily available, then find the optimal area to search with it. In the first method, 
the search planner determines how much effort is required to get the desired 
result and then has to try to obtain the necessary resources. In the second 
method, the search planner determines what resources are available, then 
determines the best way to employ them. Both are practical approaches, but 
very often resource availability is determined by external factors independent of 
the search planner’s desires. For this reason, the ISPM in assumes the amount 
of available effort is known and provides a way of determining the best way to 
use that effort. However, the graphs and formulas of the ISPM can be worked 
“backward” from a desired cumulative POS to the cumulative relative effort 
required, and then to the actual effort required in square nautical miles. The 
optimal search factor, search area, coverage factor, etc., can then be found in 
the usual fashion.  

 
7.5.5 With the SSPM, an approach somewhat different from either of those just 

described was taken in order to simplify the method. Instead of a desired POS 
or cumulative POS, an assumption was made about the coverage factor to be 
used in all searches. The coverage factor was probably intended to always be 
1.0 and the optimal area based on that assumption was supposed to be that 
produced by the “safety factor.” As seen above, this is very nearly the case, 
especially for the first three searches. However, fixing the coverage factor for all 
searches severely limits the SSPM’s flexibility, requiring the search planner to 
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find specific amounts of search effort for each search or risk wasting search 
effort by not using it in the most optimal way. 
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7.5.6 If the search planner happens to have exactly the right amount of search effort 
available to cover the area recommended by the SSPM with a coverage factor 
of 1.0, then the SSPM works very well for at least the first three searches. 
Alternatively, if the search planner has the luxury of always being able to 
determine the amount of resources to commit to a search and decides to 
commit just the amount needed to cover the SSPM’s recommended search 
area with a coverage factor of 1.0, then an optimal result for the amount of 
effort actually expended will be produced. However, in any other situation, the 
SSPM does not help the search planner make difficult decisions about the 
amount of area to cover with the available resources. 

 
7.5.7 To illustrate the difficulty faced by the search planner, consider the situation 

where the available search effort for the first search is significantly different 
from than that required to cover the SSPM’s recommended search area with a 
coverage factor of 1.0. In other words, the relative effort for the first search is 
significantly different from 4.84. The SSPM provides no guidance on how to 
apply such different levels of search effort. Two possible alternatives come 
immediately to mind. 

 
· Alternative (1) - Cover as much area as possible with a coverage factor of 

1.0. This will result in a search area significantly different from the one 
recommended. 

 
· Alternative (2) - Cover the area recommended for the first search (based on 

a “safety factor” of 1.1) using the available search effort. This will result in a 
coverage factor significantly different from 1.0. 

 
7.5.8 The following tables compare these two alternatives to the optimal search plan 

and to each other for various values of relative effort. As before, the following 
definitions apply: 

 
POC:    Probability of Containment. The probability that the 

search object is in the search area. 
 

POD:    Probability of Detection. The probability that the 
search object will be detected if it is in the search 
area. 

 
POS:    Probability of Success. The probability that the search 

object will be found by covering the search area 
uniformly with the available search effort. POS = POC 
x POD. 

 
Search Factor:  A value which, when multiplied by the total probable 

error of position (E) produces the “search radius” or 
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one-half the length of one side of the square search 
area. It corresponds to the “safety factor” used in the 
SSPM. 
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7.5.9 In all the tables below, it is assumed that an inverse cube law sensor moving 
along equally spaced parallel tracks under ideal search conditions is used 
within the search area. To keep the comparisons simple, a sweep width of 1.0 
was assumed for all cases. The remaining values in the tables below were 
computed as follows. 

 
· Optimal - The optimal search factor (fs) was found using the computer 

program that generated the optimal search factor curves. The coverage 
factor (C) was then computed as the ratio of the relative effort to the 
“relative area” of a square just large enough to encompass a circle whose 
radius is fs (i.e., with sides equal to 2 fs.). That is, 

 

[1] 
C
W=S  

 
The track space was then computed as the sweep width divided by the 
coverage factor, or 

 

[2] 
)f(2

Z=C 2
s

r  

 
The POC, POD and POS values were all computed with computer program 
modules based on standard algorithms. 

 
· Alternative (1) - The coverage factor was assumed to be 1.0. The track 

space was computed using [2] above. The search factor was then computed 
by solving equation [1] for fs

 

[3] 
C
Z

2
1=f r

s  

 
The POC, POD, and POS values were then computed using the same 
computer program modules as before. 

 
· Alternative (2) - The search factor was assumed to be same as the first 

search “safety factor” recommended by the SSPM, or 1.1. The coverage 
factor, track spacing and other values were then computed just as they 
were for the optimal search factor. 

 
7.5.10 In all three cases in each table, exactly the same amount of search effort was 

available. The first row in each table shows the optimal way to allocate the 
effort and the resulting POS. The second row shows what happens when the 
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available effort is used with a coverage factor of 1.0. The third row shows what 
happens when the available effort is applied uniformly to the area found by 
using the SSPM “safety factor.” 

  
 

 
Relative Effort = 1.0  

 
 
Sweep 
Width 

 
Track 
Space 

 
Coverag
e Factor 

 
POC 

 
POD 

 
POS 

 
Search 
Factor  

Optimal 
 

1.0 
 

1.65 
 

0.60 
 
30.38% 

 
55.11% 

 
16.74% 

 
0.64  

Alternative 
(1) 

 
1.0 

 
1.00 

 
1.00 

 
19.71% 

 
78.99% 

 
15.57% 

 
0.50 

 
Alternative 

(2) 

 
1.0 

 
4.84 

 
0.21 

 
64.76% 

 
20.43% 

 
13.23% 

 
1.10 

 Table 7-2(a) 
 
  

 
 

Relative Effort = 2.5  
 

 
Sweep 
Width 

 
Track 
Space 

 
Coverag
e Factor 

 
POC 

 
POD 

 
POS 

 
Search 
Factor  

Optimal 
 

1.0 
 

1.22 
 

0.82 
 
48.44% 

 
69.60% 

 
33.71% 

 
0.87  

Alternative 
(1) 

 
1.0 

 
1.00 

 
1.00 

 
42.00% 

 
78.99% 

 
33.17% 

 
0.79 

 
Alternative 

(2) 

 
1.0 

 
1.94 

 
0.52 

 
64.76% 

 
48.26% 

 
31.25% 

 
1.10 

 Table 7-2(b) 
 
  

 
 

Relative Effort = 4.84 (same as that assumed by SSPM)  
 

 
Sweep 
Width 

 
Track 
Space 

 
Coverag
e Factor 

 
POC 

 
POD 

 
POS 

 
Search 
Factor  

Optimal 
 

1.0 
 

0.98 
 

1.02 
 
63.97% 

 
79.98% 

 
51.17% 

 
1.09  

Alternative 
(1) 

 
1.0 

 
1.00 

 
1.00 

 
64.76% 

 
78.99% 

 
51.15% 

 
1.10 

 
Alternative 

(2) 

 
1.0 

 
1.00 

 
1.00 

 
64.76% 

 
78.99% 

 
51.15% 

 
1.10 

 Table 7-2(c) 
 
  

 
 

Relative Effort = 10.0  
 

 
Sweep 
Width 

 
Track 
Space 

 
Coverag
e Factor 

 
POC 

 
POD 

 
POS 

 
Search 
Factor  

Optimal 
 

1.0 
 

0.77 
 

1.30 
 
80.50% 

 
89.72% 

 
72.23% 

 
1.39         
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Alternative 
(1) 

1.0 1.00 1.00 87.86% 78.99% 69.40% 1.58 
 

Alternative 
(2) 

 
1.0 

 
0.48 

 
2.07 

 
64.76% 

 
99.04% 

 
64.14% 

 
1.10 

 Table 7-2(d) 



The Theory of Search Chapter 7  

  
 7−12 

  
 

 
Relative Effort = 20.0  

 
 
Sweep 
Width 

 
Track 
Space 

 
Coverag
e Factor 

 
POC 

 
POD 

 
POS 

 
Search 
Factor  

Optimal 
 

1.0 
 

0.61 
 

1.64 
 
92.20% 

 
96.02% 

 
88.53% 

 
1.75  

Alternative (1) 
 

1.0 
 

1.00 
 

1.00 
 
98.31% 

 
78.99% 

 
77.66% 

 
2.24  

Alternative (2) 
 

1.0 
 

0.24 
 

4.13 
 
64.76% 

 
100.00

% 

 
64.76% 

 
1.10 

 Table 7-2(e) 
 
7.6 Conclusions. The above tables compare the optimal ISPM and the alternative 

SSPM search plans in a way that shows the SSPM in the most favorable 
possible light. Even so, several conclusions about the first search around a 
point datum can be drawn from these tables. 

 
· Using the optimal search factor from the ISPM always produces the best 

possible result, that is, the highest POS. 
 

· If the optimal search factor is not known, searching as much area as 
possible at a coverage of 1.0 will produce better results than covering the 
SSPM’s recommended search area at a higher or lower coverage. 
However, the POS will still be less than the optimal value. 

 
· The fixed “safety factors” of the SSPM are not very useful in determining the 

best amount of area to cover with the available resources. 
 
7.6.1 There are some other, more subtle, consequences and requirements of the 

SSPM. If the area computed from each successive “safety factor” is to be 
searched with a coverage factor of 1.0, then each search effort has to be larger 
than the previous one by exactly the right amount. That is, the second search 
effort would need to be 10.24/4.84 or 2.12 times as large as the first, the third 
would have to be 1.56 times as large as the second, etc. Any deviation from 
this sequence would produce less than optimal results. The ISPM, on the other 
hand, can handle any increase in the level of effort and almost any situation 
where the level of effort is smaller than that of the previous search. (A very high 
level of effort followed by and extremely low level will cause problems even for 
the ISPM. However, the level of effort on the latter search would have to be on 
the order of only about 10% of the level of the previous effort to make the ISPM 
produce a less than optimal result.) Unlike the SSPM, the ISPM gives the 
search planner the flexibility needed to deal with realistic variations in available 
search efforts during the progress of an extended search. 

 
7.6.2 Although not shown in this paper, the ISPM may be applied to line and area 

datums as well as point datums. The SSPM was intended to be used with point 
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datums alone. Therefore, there is no opportunity to compare the SSPM and 
ISPM for line and area datums. 

 
7.7 Summary. To summarize, the advantages of the ISPM over the SSPM are: 
 

· The ISPM always produces the highest possible cumulative probability of 
success (POS). (The SSPM provides an optimal result only when the 
available effort for each search is a certain special value in relation to the 
total probable error of position.) 

 
· The ISPM is flexible with respect to the type of datum. The ISPM includes 

procedures, formulas and graphs that allow it to be applied to point datums, 
line datums and area datums. (The SSPM applies only to point datums.) 

 
· The ISPM is flexible with respect to the amount of available search effort. It 

produces an optimal search factor tailored to the capabilities of the available 
search facilities. (The SSPM uses a fixed set of “safety factors” that require 
certain specific levels of effort to be obtained and used.) 

 
· The ISPM is flexible with respect to the search conditions. Graphs are 

provided for both ideal and poor search conditions. (The SSPM considered 
only ideal search conditions.) 

 
· The ISPM provides a measure of search effectiveness. Probability of 

Success (POS) and cumulative probability of success (POSc) are used as 
criteria for optimizing the allocation of search effort and may be used by 
SAR Mission Coordinators (SMCs) as one factor in deciding on whether to 
continue searching. (The SSPM provides no measure of search 
effectiveness.) 

 
· Finally, the ISPM is almost as easy to use, requiring only a few 

computations in addition to those already being done for the SSPM. 
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 Afterword 
 
 
The rule of Bayes and Bayes’s formula were deliberately not mentioned in this paper in order to 
keep both the concepts and the computations as simple as possible. The basic principles were 
easier to explain without having to develop Bayes’s formula for the benefit of those without a 
strong background in statistics. In addition, doing a full Bayesian update of a probability map 
requires considerably more computation and every effort was being made to minimize the 
amount of computation required.  
 
The effect of the omitted computations amounts to omitting a re-normalization of the probability 
map following each search update. Such a Bayesian re-normalization would have restored the 
total POC for the possibility area to 1.0 after each search, regardless of how much searching was 
done. The more intuitive approach of “subtracting probability” from the possibility area until it 
fades away completely was deemed preferable for purposes of explaining the POC update 
process. It also made the computation of cumulative POS considerably easier and provided a 
direct and obvious connection between cumulative POS and remaining POC.  
 
The omission of re-normalization computations in no way affects the development of optimal 
search plans. The optimal search radii will be the same regardless of whether probability maps 
are re-normalized after each search update. It should be noted that both the current and recently 
re-developed versions of the U. S. Coast Guard’s Computer Assisted Search Planning (CASP) 
system use full Bayesian updates for probability map displays, but compute cumulative POS by 
dividing the sum of all “pfail” (i.e., remaining probability) values on the individual simulated 
search objects by the total number of search objects in the simulation and subtracting the result 
from 1.0. 
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 Table A-1 
 NORMAL DISTRIBUTION FUNCTION 
 

 dte
2
1=P(x) t2

1-x
-

2

∫ ∞π
 

  
x 

 
0.00 

 
0.01 

 
0.02 

 
0.03 

 
0.04 

 
0.05 

 
0.06 

 
0.07 

 
0.08 

 
0.09  

0.0 
 

0.5000 
 

0.5040 
 

0.5080 
 

0.5120 
 

0.5160 
 

0.5199 
 

0.5239 
 

0.5279 
 

0.5319 
 

0.5359  
0.1 

 
0.5398 

 
0.5438 

 
0.5478 

 
0.5517 

 
0.5557 

 
0.5596 

 
0.5636 

 
0.5675 

 
0.5714 

 
0.5753  

0.2 
 

0.5793 
 

0.5832 
 

0.5871 
 

0.5910 
 

0.5948 
 

0.5987 
 

0.6026 
 

0.6064 
 

0.6103 
 

0.6141  
0.3 

 
0.6179 

 
0.6217 

 
0.6255 

 
0.6293 

 
0.6331 

 
0.6368 

 
0.6406 

 
0.6443 

 
0.6480 

 
0.6517  

0.4 
 

0.6554 
 

0.6591 
 

0.6628 
 

0.6664 
 

0.6700 
 

0.6736 
 

0.6772 
 

0.6808 
 

0.6844 
 

0.6879  
0.5 

 
0.6915 

 
0.6950 

 
0.6985 

 
0.7019 

 
0.7054 

 
0.7088 

 
0.7123 

 
0.7157 

 
0.7190 

 
0.7224  

0.6 
 

0.7257 
 

0.7291 
 

0.7324 
 

0.7357 
 

0.7389 
 

0.7422 
 

0.7454 
 

0.7486 
 

0.7517 
 

0.7549  
0.7 

 
0.7580 

 
0.7611 

 
0.7642 

 
0.7673 

 
0.7704 

 
0.7734 

 
0.7764 

 
0.7794 

 
0.7823 

 
0.7852  

0.8 
 

0.7881 
 

0.7910 
 

0.7939 
 

0.7967 
 

0.7995 
 

0.8023 
 

0.8051 
 

0.8078 
 

0.8106 
 

0.8133  
0.9 

 
0.8159 

 
0.8186 

 
0.8212 

 
0.8238 

 
0.8264 

 
0.8289 

 
0.8315 

 
0.8340 

 
0.8365 

 
0.8389  

1.0 
 

0.8413 
 

0.8438 
 

0.8461 
 

0.8485 
 

0.8508 
 

0.8531 
 

0.8554 
 

0.8577 
 

0.8599 
 

0.8621  
1.1 

 
0.8643 

 
0.8665 

 
0.8686 

 
0.8708 

 
0.8729 

 
0.8749 

 
0.8770 

 
0.8790 

 
0.8810 

 
0.8830  

1.2 
 

0.8849 
 

0.8869 
 

0.8888 
 

0.8907 
 

0.8925 
 

0.8944 
 

0.8962 
 

0.8980 
 

0.8997 
 

0.9015  
1.3 

 
0.9032 

 
0.9049 

 
0.9066 

 
0.9082 

 
0.9099 

 
0.9115 

 
0.9131 

 
0.9147 

 
0.9162 

 
0.9177  

1.4 
 

0.9192 
 

0.9207 
 

0.9222 
 

0.9236 
 

0.9251 
 

0.9265 
 

0.9279 
 

0.9292 
 

0.9306 
 

0.9319  
1.5 

 
0.9332 

 
0.9345 

 
0.9357 

 
0.9370 

 
0.9382 

 
0.9394 

 
0.9406 

 
0.9418 

 
0.9429 

 
0.9441  

1.6 
 

0.9452 
 

0.9463 
 

0.9474 
 

0.9484 
 

0.9495 
 

0.9505 
 

0.9515 
 

0.9525 
 

0.9535 
 

0.9545  
1.7 

 
0.9554 

 
0.9564 

 
0.9573 

 
0.9582 

 
0.9591 

 
0.9599 

 
0.9608 

 
0.9616 

 
0.9625 

 
0.9633  

1.8 
 

0.9641 
 

0.9649 
 

0.9656 
 

0.9664 
 

0.9671 
 

0.9678 
 

0.9686 
 

0.9693 
 

0.9699 
 

0.9706  
1.9 

 
0.9713 

 
0.9719 

 
0.9726 

 
0.9732 

 
0.9738 

 
0.9744 

 
0.9750 

 
0.9756 

 
0.9761 

 
0.9767  

2.0 
 

0.9772 
 

0.9778 
 

0.9783 
 

0.9788 
 

0.9793 
 

0.9798 
 

0.9803 
 

0.9808 
 

0.9812 
 

0.9817  
2.1 

 
0.9821 

 
0.9826 

 
0.9830 

 
0.9834 

 
0.9838 

 
0.9842 

 
0.9846 

 
0.9850 

 
0.9854 

 
0.9857  

2.2 
 

0.9861 
 

0.9864 
 

0.9868 
 

0.9871 
 

0.9875 
 

0.9878 
 

0.9881 
 

0.9884 
 

0.9887 
 

0.9890  
2.3 

 
0.9893 

 
0.9896 

 
0.9898 

 
0.9901 

 
0.9904 

 
0.9906 

 
0.9909 

 
0.9911 

 
0.9913 

 
0.9916  

2.4 
 

0.9918 
 

0.9920 
 

0.9922 
 

0.9925 
 

0.9927 
 

0.9929 
 

0.9931 
 

0.9932 
 

0.9934 
 

0.9936  
2.5 

 
0.9938 

 
0.9940 

 
0.9941 

 
0.9943 

 
0.9945 

 
0.9946 

 
0.9948 

 
0.9949 

 
0.9951 

 
0.9952  

2.6 
 

0.9953 
 

0.9955 
 

0.9956 
 

0.9957 
 

0.9959 
 

0.9960 
 

0.9961 
 

0.9962 
 

0.9963 
 

0.9964  
2.7 

 
0.9965 

 
0.9966 

 
0.9967 

 
0.9968 

 
0.9969 

 
0.9970 

 
0.9971 

 
0.9972 

 
0.9973 

 
0.9974  

2.8 
 

0.9974 
 

0.9975 
 

0.9976 
 

0.9977 
 

0.9977 
 

0.9978 
 

0.9979 
 

0.9979 
 

0.9980 
 

0.9981  
2.9 

 
0.9981 

 
0.9982 

 
0.9982 

 
0.9983 

 
0.9984 

 
0.9984 

 
0.9985 

 
0.9985 

 
0.9986 

 
0.9986  

3.0 
 

0.9987 
 

0.9987 
 

0.9987 
 

0.9988 
 

0.9988 
 

0.9989 
 

0.9989 
 

0.9989 
 

0.9990 
 

0.9990  
3.1 

 
0.9990 

 
0.9991 

 
0.9991 

 
0.9991 

 
0.9992 

 
0.9992 

 
0.9992 

 
0.9992 

 
0.9993 

 
0.9993  

3.2 
 

0.9993 
 

0.9993 
 

0.9994 
 

0.9994 
 

0.9994 
 

0.9994 
 

0.9994 
 

0.9995 
 

0.9995 
 

0.9995  
3.3 

 
0.9995 

 
0.9995 

 
0.9995 

 
0.9996 

 
0.9996 

 
0.9996 

 
0.9996 

 
0.9996 

 
0.9996 

 
0.9997            
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3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 
 
 Table A-2 
 ERROR FUNCTION 
 

 dte
2=erf(x) t-x

0
2

∫
π

 

  
x 

 
0.00 

 
0.01 

 
0.02 

 
0.03 

 
0.04 

 
0.05 

 
0.06 

 
0.07 

 
0.08 

 
0.09 

 
0.0 

 
0.0000 

 
0.0113 

 
0.0226 

 
0.0338 

 
0.0451 

 
0.0564 

 
0.0676 

 
0.0789 

 
0.0901 

 
0.1013 

 
0.1 

 
0.1125 

 
0.1236 

 
0.1348 

 
0.1459 

 
0.1569 

 
0.1680 

 
0.1790 

 
0.1900 

 
0.2009 

 
0.2118 

 
0.2 

 
0.2227 

 
0.2335 

 
0.2443 

 
0.2550 

 
0.2657 

 
0.2763 

 
0.2869 

 
0.2974 

 
0.3079 

 
0.3183 

 
0.3 

 
0.3286 

 
0.3389 

 
0.3491 

 
0.3593 

 
0.3694 

 
0.3794 

 
0.3893 

 
0.3992 

 
0.4090 

 
0.4187 

 
0.4 

 
0.4284 

 
0.4380 

 
0.4475 

 
0.4569 

 
0.4662 

 
0.4755 

 
0.4847 

 
0.4937 

 
0.5027 

 
0.5117 

 
0.5 

 
0.5205 

 
0.5292 

 
0.5379 

 
0.5465 

 
0.5549 

 
0.5633 

 
0.5716 

 
0.5798 

 
0.5879 

 
0.5959 

 
0.6 

 
0.6039 

 
0.6117 

 
0.6194 

 
0.6270 

 
0.6346 

 
0.6420 

 
0.6494 

 
0.6566 

 
0.6638 

 
0.6708 

 
0.7 

 
0.6778 

 
0.6847 

 
0.6914 

 
0.6981 

 
0.7047 

 
0.7112 

 
0.7175 

 
0.7238 

 
0.7300 

 
0.7361 

 
0.8 

 
0.7421 

 
0.7480 

 
0.7538 

 
0.7595 

 
0.7651 

 
0.7707 

 
0.7761 

 
0.7814 

 
0.7867 

 
0.7918 

 
0.9 

 
0.7969 

 
0.8019 

 
0.8068 

 
0.8116 

 
0.8163 

 
0.8209 

 
0.8254 

 
0.8299 

 
0.8342 

 
0.8385 

 
1.0 

 
0.8427 

 
0.8468 

 
0.8508 

 
0.8548 

 
0.8586 

 
0.8624 

 
0.8661 

 
0.8698 

 
0.8733 

 
0.8768 

 
1.1 

 
0.8802 

 
0.8835 

 
0.8868 

 
0.8900 

 
0.8931 

 
0.8961 

 
0.8991 

 
0.9020 

 
0.9048 

 
0.9076 

 
1.2 

 
0.9103 

 
0.9130 

 
0.9155 

 
0.9181 

 
0.9205 

 
0.9229 

 
0.9252 

 
0.9257 

 
0.9297 

 
0.9319 

 
1.3 

 
0.9340 

 
0.9361 

 
0.9381 

 
0.9400 

 
0.9419 

 
0.9438 

 
0.9456 

 
0.9473 

 
0.9490 

 
0.9507 

 
1.4 

 
0.9523 

 
0.9539 

 
0.9554 

 
0.9569 

 
0.9583 

 
0.9597 

 
0.9611 

 
0.9624 

 
0.9637 

 
0.9649 

 
1.5 

 
0.9661 

 
0.9673 

 
0.9684 

 
0.9695 

 
0.9706 

 
0.9716 

 
0.9726 

 
0.9736 

 
0.9745 

 
0.9755 

 
1.6 

 
0.9763 

 
0.9772 

 
0.9780 

 
0.9788 

 
0.9796 

 
0.9804 

 
0.9811 

 
0.9818 

 
0.9825 

 
0.9832 

 
1.7 

 
0.9838 

 
0.9844 

 
0.9850 

 
0.9856 

 
0.9861 

 
0.9867 

 
0.9872 

 
0.9877 

 
0.9882 

 
0.9886 

 
1.8 

 
0.9891 

 
0.9895 

 
0.9899 

 
0.9903 

 
0.9907 

 
0.9911 

 
0.9915 

 
0.9918 

 
0.9922 

 
0.9925 

 
1.9 

 
0.9928 

 
0.9931 

 
0.9934 

 
0.9937 

 
0.9939 

 
0.9942 

 
0.9944 

 
0.9947 

 
0.9949 

 
0.9951 

 
2.0 

 
0.9953 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 


	cover_front.pdf
	COVER.WP6.doc
	FRONT.WP6.doc

	chapter1_2_3.pdf
	CH_01.WP6.doc
	CH_02.WP6.doc
	CH_03.WP6.doc

	CH_04-05.pdf
	CH_04.WP6.doc
	CH_05.WP6.doc

	CH_06.WP6.pdf
	Ch_07.pdf
	CH_07.WP6.doc

	afterword_bib_appendix.pdf
	AFTRWORD.WP6.doc
	BIBLIOG.WP6.doc
	APP_A.WP6.doc


